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Abstract 
 

Sustainable forest management is a complex dynamic problem, and an important issue worldwide.  

Forests supply the world’s population with a variety of forest products, including renewable 

products such as fruits, nuts, and maple syrup that can be harvested at more frequent intervals 

than the trees themselves. When there is both uncertainty and interdependent forest products, the 

interaction between these two phenomena leads to a complicated set of trade-offs.  We develop 

a nested stochastic dynamic bioeconomic model of optimal forest management under uncertainty 

for interdependent products that differ in their growth cycles, rates of growth, lengths of growing 

periods, and potential harvest frequency.  We use our model to assess the optimality of actual 

decisions made by forest managers and to develop a dynamic structural econometric model to 

understand the beliefs and perceptions that underlie and rationalize their management strategies.  

We apply our model to bamboo forests, which generate two interdependent products: bamboo 

shoots and bamboo stems. Our methodology is relevant and applicable to the sustainable 

management of a variety of renewable resources that generate multiple interdependent products.   
 

Keywords: forest management, dynamic model, interdependent products, tree crops, bamboo 

JEL codes:  Q23, L73, C61, Q57 

This draft: December 2025 

 
1Wu: Natural Resources Institute Finland (Luke); tong.wu@luke.fi.  Just: Cornell University; drj3@cornell.edu.  Lin Lawell: 

Cornell University; clinlawell@cornell.edu.  Ortiz-Bobea: Cornell University; ao332@cornell.edu.  Zhao: Zhejiang Academy of 

Forestry; jiancheng68@163.com.     
2 We thank Qin Li, Lina Liu, Jianping Pan, and Boqing Yuan for helping us with the data collection; for providing us information about bamboo 

management; and for helping to host our visits to the Zhejiang Provincial Key Laboratory of Bamboo of Zhejiang Provincial Academy of Forestry, 

the Anji Forestry Technology Promotion Center, the Fumin Bamboo Shoot Specialized Cooperative, and the Tianlin Bamboo Shoot Specialized 

Cooperative, respectively.  We thank Jianyang Lin, the Party Secretary for Xikou Forest Farm in Longyou County, for his exceptional support and 

organization for our interviews and short trips to the trade corporation in Longyou County. We thank Zhangjun Fei and Qiang Wei for invaluable 

information and discussions about Moso bamboo biology and growth.  We thank Ryan Abman, H. Jo Albers, Jeff Arnold, Trevor Dean Arnold, 

Joe Balagtas, Levon Barseghyan, Rachid Belhachemi. Susanna Berkouwer, Léa Bou Sleiman, Jacob Bradt, Daniel Brent, Mike Buffo, Marshall 

Burke, Jonah Busch, Virginia Callison, Luming Chen, Lauren Chenarides, Sahan Dissanayake, Ida Djenontin, Victor Simoes Dornelas, Jackson 

Dorsey, Molly Doruska, Luc Esprabens, Zhangjun Fei, Paul Ferraro, Scott Francisco, Stephie Fried, Teevrat Garg, Todd Gerarden, Dalia Ghanem, 

Matthew Gibson, Tengda Gong, Gautam Gowrisankaran, Gerrit Graper, Logan Hamilton, Nils Haveresch, Yurou He, Janne Helin, Ted Helvoigt, 

Danae Hernández-Cortés, Alan Hinds, Jacob Holifield, Jennifer Ifft, Jerzy Jaromczyk, Akshaya Jha, Valerie Karplus, Aysegul Kilinc, Jim Kiniry, 

Cathy Kling, Samuel Kortum, Elena Krasovskaia, Yusuke Kuwayama, Katherine Lacy, Ashley Langer, Jim Lassoie, David R. Lee, Heikki Lehtonen, 

Arik Levinson, David Lewis, Dingyi Li, Shanjun Li, Mengwei Lin, Jules Linden, Jussi Lintunen, Tianzi Liu, Clark Lundberg, Erin Mansur, Antonia 

Marcheva, Shana McDermott, Brandon McFadden, Michael Meneses, Carlos Muñoz Brenes, Anjali Narang, Ishan Nath, Matías Navarro Sudy, 

Harry Nelson, José Nuño, Frederick Nyanzu, Anthony Ponce, David Popp, Linda Powell, Jeisson Prieto, Yu Qin, Martin Quaas, Carson Reeling, 

Brigitte Roth Tran, Ivan Rudik, Seth Sanders, Michelle Segovia, Jonathan Scott, Chris Severen, Jeff Shrader, Shuyang Si, Peter Smallidge, Aaron 

Smith, Charlie Smith, Christophe Spaenjers, Robert Stavins, Jayen Tan, Vaios Triantafyllou, Nick Tsivanidis, Calum Turvey, Wayne Walker, 

David Weinstein, Cade White, Matthew Wibbenmeyer, Peter Woodbury, Weiguang Wu, Tianming Yen, Shuo Yu, Terry Zhang, Hongyu Zhao, 

and Hui Zhou for detailed and helpful comments.  We also benefited from comments from seminar participants at Cornell University, Natural 

Resources Institute Finland (Luke), and University of International Business and Economics (UIBE); and conference participants at the Western 

Forest Economists (WFE) Annual Meeting; the Northeastern Agricultural and Resource Economics Association (NAREA) Annual Meeting; an 

Association of Environmental and Resource Economists (AERE) session at the Western Economic Association International (WEAI) Annual 

Conference; the Agricultural and Applied Economics Association (AAEA) Annual Meeting; the European Association of Environmental and 

Resource Economists (EAERE) Annual Conference; the University of Michigan conference on Forests & Livelihoods: Assessment, Research, and 

Engagement (FLARE); and the International Business Analytics Conference (IBAC).  This research was supported by Cornell Center for Social 

Sciences Cloud Computing Solutions, and was conducted with support from the Cornell University Center for Advanced Computing.  We received 

funding for our research from the USDA National Institute of Food and Agriculture (NIFA); Cornell TREESPEAR Research Grants; Cornell 

DEEP-GREEN-RADAR Research Grants; and Cornell University Graduate School Conference Grants.  Our IRB protocol (Protocol Number: 

IRB0148123) was granted exemption from IRB review according to Cornell IRB policy and under the Department of Health and Human Services 

Code of Federal Regulations 45CFR46.104(d). Just, Lin Lawell, and Ortiz-Bobea are Faculty Fellows at the Cornell Atkinson Center for 

Sustainability. All errors are our own.   

mailto:tong.wu@luke.fi
mailto:drj3@cornell.edu
mailto:clinlawell@cornell.edu
mailto:ao332@cornell.edu
mailto:jiancheng68@163.com


1 

1. Introduction 

Sustainable forest management is a complex dynamic problem, and an important issue 

worldwide. Forests supply the world’s population with timber as well as renewable non-timber 

forest products such as fruits, nuts, and maple syrup that can be harvested at more frequent intervals 

than the trees themselves. This paper develops a nested stochastic dynamic bioeconomic model of 

optimal forest management under uncertainty for interdependent products.     

When forest products are interdependent, the harvest of one product may affect the 

availability or growth of another product.  For example, after harvesting a tree, one will no longer 

be able to grow or harvest products that grow on the tree.  Furthermore, the timing of the harvest 

of one product may affect how it affects another product.  For example, harvesting a tree may have 

less of an effect on the tree crops that season if the tree harvest takes place after the tree crops have 

already been harvested. 

There is an interesting trade-off that arises for forest management under uncertainty.  Under 

some forms of uncertainty (e.g., uncertainty in prices or precipitation), since harvests are 

irreversible, there may be an option value to waiting before harvesting that is akin to the option 

value to waiting in most problems of investment under uncertainty (Dixit and Pindyck, 1994).  

Thus, all else equal, a forest manager facing these forms of uncertainty may find it optimal to delay 

harvests.  On the other hand, the opposite happens when there is uncertainty over the survival of a 

forest product.  Since any death, decay, or damage to the forest product is irreversible, all else 

equal, a forest manager facing the possibility that a forest product may die, decay, be damaged, or 

be infested by pests may find it optimal to harvest earlier.  Thus, a forest manager under uncertainty 

faces two different types of irreversibilities – in harvests on the one hand; and in death or damage 

on the other – which leads to a tension between delaying versus expediting harvests.  This tension 

is akin to the countervailing forces that arise in environmental policy adoption, wherein on the one 

hand, environmental policy may induce regulatees (e.g., firms, households, individuals, society) 

to make irreversible investments in order to comply, and there is an option value to waiting before 

making these irreversible investments; while on the other hand, delaying climate policy may lead 

to environmental damage that may be at least partially irreversible, which all else equal would 

favor expediting climate change policy and adaptation (Dixit and Pindyck, 1994).   

When there is both uncertainty and interdependent forest products, the interaction between 

these two phenomena leads to a complicated set of trade-offs; and developing a model at this nexus 



2 

is the primary innovation of our paper.  On the one hand, reasons for a forest manager to harvest a 

forest product sooner rather than later may include high prices, low costs, and uncertainty over the 

survival of the product.  On the other hand, reasons for a forest manager to delay the harvest of a 

forest product include allowing the product more time to grow in size, ripeness, or quality; 

uncertainty over prices; uncertainty over costs; uncertainty over precipitation; and allowing an 

interdependent product to grow. 

In this paper, we develop a nested stochastic dynamic bioeconomic model of the optimal 

management of forests that generate interdependent products that differ in their growth cycles, 

rates of growth, lengths of growing periods, and potential harvest frequency.  Our model helps 

inform optimal forest harvest decision-making under uncertainty when forest products are 

interdependent, and the optimal strategies from the model can be compared with actual harvesting 

decisions. We also use our nested stochastic dynamic bioeconomic model to develop a dynamic 

structural econometric model to understand the beliefs and perceptions of forest managers that 

underlie and rationalize their actual harvesting decisions.  We then use our model to assess sources 

of any potentially sub-optimal behavior, and suggest possible ways to address them. Our model 

has important implications for the sustainable management of forests worldwide, particularly when 

the forests produce products that can be harvested at more frequent intervals than the trees 

themselves.     

We apply our nested stochastic dynamic bioeconomic model to bamboo forests, which 

generate two interdependent products: bamboo shoots and bamboo stems.  Bamboo is a fast 

growing, renewable, versatile, and easy-to-grow resource touted for its environmental and 

sustainability benefits (Econation, 2025; Lewis Bamboo, 2025; Guadua Bamboo, 2025).  Bamboo 

shoots are a traditional food source, and bamboo stems are used as timber for paper making, 

flooring, and construction (Fu, 2001).  Moso bamboo (Phyllostachys edulis) is the single most 

important bamboo species in China, accounting for 74% of China’s bamboo forest area (China 

Forestry and Grassland Administration, 2018), as well as the third most important source of timber 

in China.   

Optimal bamboo forest management is a complex dynamic problem, and involves making 

decisions about the timing and quantity of bamboo stem harvests and bamboo shoot harvests.  The 

harvesting of bamboo stems entails cutting down the bamboo plant, while the harvesting of 

bamboo shoots does not. Bamboo shoots grow annually from a bamboo plant’s underground 

http://english.forestry.gov.cn/index.php?option=com_content&view=article&id=2:forest-resources-in-china&catid=10&Itemid=134
http://english.forestry.gov.cn/index.php?option=com_content&view=article&id=2:forest-resources-in-china&catid=10&Itemid=134
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rhizomes.  Owing to their tender taste and to difficulties in harvesting underground shoots, winter 

shoots – which are young bamboo shoots that are just beginning to grow underground during the 

winter months – have a higher market price than the older spring shoots that emerge above ground 

during the later spring months.  Bamboo shoots grow into bamboo stem after the end of spring 

shooting (Shi et al., 2013), and these bamboo stems continue to grow each year until age 4-5 years 

(Zhang et al., 2014; Zhuang et al., 2015).  Bamboo shoots only grow within a year.  Bamboo shoots 

prices vary day to day and are hard to predict, while the bamboo stem price does not vary much 

over the course of a year.  Winter shoots are more expensive than spring shoots, and both winter 

shoots and spring shoots are more expensive than bamboo stem.   

There are several trade-offs involved in determining the optimal bamboo shoots harvesting 

strategy that arise from uncertainty and the interdependence of shoots and stem.  On the one hand, 

factors that may lead bamboo farmers to harvest shoots sooner rather than later include a high 

shoots price, low shoots harvest costs, and uncertainty over shoots survival.  On the other hand, 

bamboo farmers may wish to delay the shoots harvest in order to give shoots more time to grow 

in biomass, and also to wait for the possibility of a higher shoots price (since shoots prices are 

uncertain).  Furthermore, bamboo farmers may forego harvesting some or all of their bamboo 

shoots if shoots prices are low, if shoots harvests costs are high, if they wish to have more bamboo 

stem the following year (since unharvested shoots grow into bamboo stem at the end of the year), 

and/or if there is uncertainty over precipitation (which affects how many shoots will grow the 

following year from any stem that resulted from unharvested shoots the previous year). 

Likewise, there are several trade-offs involved in determining the optimal bamboo stem 

harvesting strategy.  On the one hand, reasons to harvest bamboo stem sooner rather than later 

include high stem prices and low stem harvest costs.  On the other hand, bamboo farmers may 

wish to delay harvesting bamboo stem in order to give the stem more time to grow in biomass, if 

stem prices are low, if stem harvest costs are high, to allow shoots to grow annually from the 

bamboo plant, and/or if they face uncertainty over precipitation (which affects how many shoots 

will grow from the stem remaining at the beginning of the year). 

To solve for the optimal bamboo stem harvest and bamboo shoot harvest policy, our nested 

stochastic dynamic bioeconomic model nests an inner finite-horizon within-year daily dynamic 

programming problem within an outer finite-horizon between-year annual dynamic programming 

problem.  The inner finite-horizon within-year daily dynamic programming problem captures daily 
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bamboo shoot growth within a year.  The outer finite-horizon between-year annual dynamic 

programming problem captures annual bamboo stem growth from year to year.  We use a 

Chapman-Richards growth function as our model for bamboo biomass accumulation. To 

incorporate uncertainty, we allow precipitation, prices, and the possibility of bamboo shoots death 

to all be stochastic.   

We use an iterative approach to developing and refining our model to ensure that it best 

reflects reality (Figure 1).  We use research and information on Moso bamboo from the biological 

sciences, economic data, and interviews we conducted with bamboo forest managers to develop 

our model and calibrate the parameters.  We compare the optimal strategy given by our model to 

data on actual bamboo shoot and bamboo stem harvests we collected from multiple bamboo plots 

in Zhejiang province in China.  After obtaining initial results from our numerical model, we then 

went back to Zhejiang province in China to interview farmers to better understand their beliefs, 

perceptions, and decision-making, and used that information to further refine our model and better 

reconcile our model with the actual data.  Then, to further understand the beliefs and perceptions 

of bamboo farmers that underlie and rationalize their bamboo shoot and bamboo stem harvesting 

decisions as revealed in the data, and to help us assess and mitigate sources of differences between 

actual behavior and the optimal strategy given by our model, we use our nested stochastic dynamic 

bioeconomic model to develop a dynamic structural econometric model to estimate different 

subsets of the parameters econometrically.   

Since there is a large set of parameters in our nested stochastic dynamic bioeconomic 

model, we are unable to identify the entire set of parameters simultaneously.  Instead, we run 

several different specifications of our structural model, each focusing on estimating a different set 

of structural parameters, holding the remaining parameters fixed at the values we calibrated for 

our numerical model based on research and information on Moso bamboo from the biological 

sciences and in economic data.  For each specification, the respective structural parameters provide 

suggestive evidence for the beliefs and perceptions of bamboo farmers regarding that parameter.   

We use any differences between the estimated structural parameters and the respective values we 

calibrated based on biological sciences and economic data to help us assess and mitigate sources 

of differences between actual behavior and the optimal strategy given by our model. 

After applying the iterative strategy above to refine our model to ensure that it best reflects 

reality, we find that the actual bamboo stem and bamboo shoot harvests come close to 
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approximating the optimal harvesting strategy, though some differences remain.  Our results have 

important implications for bamboo forest management and, to the extent that some of the 

differences between actual harvests and optimal bamboo harvests reflect possible sub-optimal 

behavior on the part of bamboo forest managers, for ways to improve bamboo forest management 

and policy.   

More generally, the methodology we develop and employ -- including our novel nested 

stochastic dynamic bioeconomic model, our dynamic structural estimation, as well as our iterative 

approach to model development and refinement (Figure 1) -- is relevant and applicable to a variety 

of production processes that generate multiple interdependent products, including forests that 

produce products (such as fruits, nuts, and maple syrup) that grow on trees, agroforestry, and cattle 

production.  In addition, our iterative approach to model development and refinement (Figure 1) 

may serve as a blueprint for integrating other insights from natural sciences into economics.  

The balance of our paper proceeds as follows. We discuss the previous literature in Section 

2.  Section 3 summarizes our biological and economic setting. We describe our numerical dynamic 

model of bamboo forest management in Section 4.  Section 5 presents the results of our numerical 

dynamic model. In Section 6, we compare the dynamically optimal harvesting strategies derived 

from our model with our data on actual bamboo shoot and bamboo stem harvests.  Section 7 

presents our dynamic structural econometric model and its results.  We conclude in Section 8.   

 

2. Previous Literature 

We build on the seminal models of optimal forest management developed by Faustmann 

(1849) for multiple timber harvests and Wicksell ([1901] 1934) for a single timber harvest, 

elaborated upon by Samuelson (1976), and subsequently extended in many ways (Kant and 

Alavalapati, 2014; Wu et al., 2024), including related extensions to allow for additional non-timber 

sources of forest value (Hartman, 1976; Nguyen, 1979; Berck, 1981; Krutilla and Bowes, 1989; 

Strang, 1983; Buongiorno, and Gilless, 2003; Yousefpour and Hanewinkel, 2009; Kim and 

Langpap, 2015; Lintunen, Rautiainen and Uusivuori, 2022), prices and costs that change over time 

(Chang, 1983; McConnell, Daberkow and Hardie, 1983; Newman, Gilbert and Hyde, 1985), risk 

of tree death or damage (Reed, 1984; Sims, 2013), and applications to specific tree species (Brodie, 

Adams, and Kao, 1978; Calish, Fight and Teeguarden, 1978; Riitters, Brodie and Hann, 1982; 

Tyler, Macmillan, and Dutch, 1996); as well as on the literature on deforestation (Démurger, Hou 
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and Yang, 2009; Souza-Rodrigues, 2019; Oldekop et al., 2019; Balboni et al., 2023; Wang, 

Amacher and Xu, 2025).  We innovate on this literature by developing a model of optimal forest 

management under uncertainty for interdependent forest products; and also by analyzing forest 

management in a developing country. 

There are multiple available models to measure the growth and productivity of a Moso 

bamboo plant. Allometric equations and logistic functions have been used for characterizing 

bamboo growth. An allometric model predicts biomass using diameter at breast height.   Biological 

studies suggest using the Chapman-Richards model (Richards, 1959), which is a flexible growth 

model for plants (Liu and Li, 2003), and has been used to predict Moso bamboo height (Yen, 2016).  

Bamboo shoot biomass accumulation has been described using a logistic curve (Zhou, 1998).  The 

literature constructing a growth model for bamboo shoots is sparse, however, and even less is 

known about underground winter shoot growth.  Thus, as the Chapman-Richards model is a 

generalized logistic curve, and since bamboo shoots are young bamboo plants, we adopt and 

separately parameterize separate Chapman-Richards models for bamboo stem growth, winter 

shoot growth, and spring shoot growth.     

The dynamics and interdependence of bamboo stem and bamboo shoots share similar 

characteristics to the dynamics and interdependence of cows and calves, and the resulting cattle 

cycle (USDA, 2025); our nested stochastic dynamic bioeconomic modeling framework therefore 

contributes to the literature on cattle management and cattle cycles (Rosen, Murphy and 

Scheinkman, 1994; Hadley, Wolf and Harsh, 2006; Tonsor, 2011).  In Wu et al. (2025b), we 

develop an analogous notion of a bamboo cycle. 

Our paper also contributes to the literature on dynamic structural econometric models, 

spawned by the seminal work of Rust (1987), and their applications, including related applications 

to natural resources (Timmins, 2002; Huang and Smith, 2014; Aguirregabiria and Luengo, 2016; 

Reeling, Verdier and Lupi, 2020; Oliva et al., 2020; Burlig, Preonas and Woerman, 2025; Sears, 

Lin Lawell and Walter, 2025; Araujo, Costa, and Sant’Anna, 2020; Sears et al., 2025a; Sears et 

al., 2025b), the environment and energy (Rapson, 2014; Blundell, Gowrisankaran and Langer, 

2020; Cook and Lin Lawell, 2020; Feger, Pavanini and Radulescu, 2020; Donna, 2021; Gillingham 

et al., 2022; Langer and Lemoine, 2022; Li, Liu and Wei, 2022; Weber, 2022; Gerarden, 2023; 

Toyama, 2024; Bradt, 2024; Thome and Lin Lawell, 2025; Kheiravar, Lin Lawell and Jaffe, 2025), 

agriculture (Scott, 2013; Carroll et al., 2019; Meneses et al., 2025a; Carroll et al., 2025b; Yeh, 
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Gómez and Lin Lawell, 2025; Meneses et al., 2025b; Carroll et al., 2025a; Sambucci, Lin Lawell 

and Lybbert, 2025), health (Iskhakov, 2010; Agarwal et al., 2021), development (Duflo, Hanna 

and Ryan, 2012;  Rojas Valdés, Lin Lawell and Taylor, 2025), and consumer behavior 

(Gowrisankaran and Rysman, 2012; Ching and Osborne, 2020).  Misra and Nair (2011) provide 

evidence that dynamic structural econometric models can help significantly improve decision-

making and outcomes.   

We innovate on the literature on dynamic structural econometric models by nesting our 

nested stochastic dynamic bioeconomic model within the maximum likelihood estimation, thereby 

yielding an expanded technique we refer to as “nested nested fixed point maximum likelihood 

estimation”. We also innovate on the literature on dynamic structural econometric modeling, and 

structural econometric modeling more generally, by using research and knowledge from the 

biological and plant sciences to inform our modeling and to calibrate the biological parameters in 

our model. Owing to intertwined feedback links between biological and economic systems, 

bioeconomic modeling is challenging, and there is a considerable need for studies that couple 

economic models of decision-making with biophysical models to provide policy-relevant 

implications (Kling et al., 2017).   

 

3. Biological and Economic Setting  

3.1. The dynamics and interdependence of bamboo stem and bamboo shoots 

Moso bamboo (Phyllostachys pubescens) is the single most important bamboo species in 

China, accounting for 74% of China’s bamboo forest area (China Forestry and Grassland 

Administration, 2018).  Moso bamboo distributes mostly in subtropical provinces including Fujian, 

Hunan, Zhejiang, and Jiangxi.  

Bamboo shoots grow annually from a bamboo plant’s rhizomes, which are underground 

bamboo stem structures.  Bamboo shoots are buds of new bamboo.  A bamboo growth year begins 

on September 1, the first day of winter shooting.  The number of bamboo shoots at the beginning 

of the bamboo growth year is positively correlated with the number of bamboo stem: the more 

bamboo stem, the more rhizomes there are underground, and the more bamboo shoots that can 

grow (Li et al., 2016; Zhang and Ding, 1997).  The number of bamboo shoots is also positively 

correlated with precipitation in July and August of the previous bamboo growth year, when 

bamboo shoots are being formed (Zhang and Ding, 1997).   

http://english.forestry.gov.cn/index.php?option=com_content&view=article&id=2:forest-resources-in-china&catid=10&Itemid=134
http://english.forestry.gov.cn/index.php?option=com_content&view=article&id=2:forest-resources-in-china&catid=10&Itemid=134
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As long as the shoots are underground and have not emerged above ground, they are called 

winter shoots. Winter shoots remain dormant during the coldest winter days in January and 

February, and emerge above ground as spring shoots in March when the temperature rises (Su, 

2012).  Winter shoots can be harvested and sold on the market for a high winter shoots price until 

they emerge above ground and start to be called spring shoots.  Spring shoots continue to grow 

very fast until the end of the bamboo growth year (Song et al., 2016).   

Bamboo shoots either degenerate, are harvested, or are left in the ground and grow into a 

newly grown bamboo stem (personal communication, bamboo specialist at Zhejiang Provincial 

Key Laboratory of Bamboo of Zhejiang Provincial Academy of Forestry, August 2018).  More 

than half of the shoots will degenerate and die naturally before they grow into bamboo stem (Jiang, 

2007).  

Bamboo shoots grow into bamboo stem after the end of spring shooting (Shi et al., 2013).  

The number of newly grown bamboo stem is the number of surviving bamboo shoots minus 

number of shoots harvested.  Moso bamboo stems reach their maximum biomass at age 4-5 years 

(Zhang et al., 2014; Zhuang et al., 2015), do not increase significantly in biomass after 4.62 years 

(Zhuang et al., 2015), and mature at age 5-6 years (Yen and Lee, 2011).   

 

3.2. Bamboo market 

The bamboo market in China is arguably characterized by perfect competition.  The 

cultivation of bamboo forests is done by individual bamboo farmers on their own land (personal 

communication, Mr. Jianping Pan, manager of Fumin Bamboo Shoot Specialized Cooperative, 

August 2018), and the number of bamboo farmers in China is quite high.  There were 7.14 million 

bamboo farmers in 2010 (International Bamboo and Rattan Organisation, 2012).  In Anji County 

of Zhejiang province alone, there were approximately 110,000 farmers growing bamboo and 

another 11,000 people working in the bamboo-processing industry in the county in 1999 (Pérez et 

al., 1999).  Bamboo farmers in Zhejiang province are small peasants who own a relatively small 

amount of land per family. The average land area managed by a family in Anji County is 21.2 mu, 

of which 14.9 mu (70%) is allocated to bamboo plantations (Pérez et al., 1999).  Bamboo shoots 

produced in Zhejiang, Hunan, Fujian, Jiangxi, and Sichuan provinces all compete for the same 

consumers (People.cn, 2014).   
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Bamboo shoots prices vary day to day and are hard to predict, while the bamboo stem price 

does not vary much over the course of a year. Bamboo shoot prices also differ for spring bamboo 

shoots and winter bamboo shoots.  Due to difficulties of locating and harvesting underground 

winter bamboo shoots, as well as popular preference over more tender taste, winter bamboo shoots 

have higher market price than spring bamboo shoots. Both winter shoots and spring shoots are 

more expensive than bamboo stem (Wu et al., 2025a).  

The bamboo shoot and bamboo stem harvest cost is determined by labor costs (Wu and 

Cao, 2016) as well as land specific characteristics such as the slope of forest land (Wu and Cao, 

2016; Dong et al., 2015).  Due to decreasing profits from bamboo forests, younger workers in rural 

areas have left their hometown and started to find jobs in large cities such as Hangzhou and 

Shanghai, leaving less labor to manage bamboo forests in rural areas of Zhejiang province; this 

insufficient labor supply has resulted in increasing labor costs in recent years (Jiang, 2020). 

 

3.3.  Data on harvests  

We collect, translate, and transcribe individual hard-copy handwritten Chinese records on 

actual bamboo shoot harvest and bamboo stem harvest decisions on 20 meter by 20 meter bamboo 

plots in Shanchuan Township and Sian Township in Zhejiang province in China.  Our data set 

includes 35 bamboo plots over 2 bamboo growth years from March 1, 2017 to August 31, 2018: 

20 bamboo plots in Sian Township and 15 bamboo plots in Shanchuan Township.  We describe 

and discuss our data in more detail in Appendix B, and present plots of the data on actual harvests 

in Section 6. 

For additional background information regarding China’s forests, bamboo forests, and 

Moso bamboo, see Wu et al. (2025a). 

 

4. Dynamic Model of Moso Bamboo Management 

We solve for the optimal bamboo stem and bamboo shoot harvest policy using a numerical 

dynamic model that nests an inner finite-horizon within-year daily dynamic programming problem 

within an outer finite-horizon between-year annual dynamic programming problem.  The inner 

finite-horizon within-year daily dynamic programming problem captures daily bamboo shoot 

growth within a year.  Sources of daily variation include the daily shoots biomass, the daily shoots 

price, the daily number of shoots, daily shoots death, and daily precipitation.  The outer finite-
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horizon between-year annual dynamic programming problem captures annual bamboo stem 

growth from year to year.3 

We model the harvesting of bamboo that was all planted at the same time (and therefore of 

the same age class).  The daily control (action) variables are the bamboo shoots harvest 𝑎𝑠 (in units 

of number of bamboo shoots) and bamboo stem harvest 𝑎𝑏 (in units of number of bamboo stem). 

The daily state variables include the number of bamboo stem 𝑛𝑏; the number of bamboo shoots 

𝑛𝑠; our precipitation state precip, which is a dummy for the cumulative daily precipitation over 

July and August of that bamboo growth year exceeding a high precipitation threshold that day; and 

the shoots price 𝑝𝑠. The time variables are year y and day-in-year d.  

To incorporate uncertainty, we allow precipitation, bamboo shoot prices, and the 

possibility of bamboo shoots death to all be stochastic.  For both precipitation and prices, we use 

the empirical distribution of precipitation and prices in the data.  In particular, we draw the daily 

winter shoots price from the empirical distribution of daily winter shoots price, we draw the daily 

spring price from the empirical distribution of daily spring shoots price, and we draw the daily 

high precipitation dummy precip from the daily empirical probability of high precipitation (precip 

= 1) for each township.  For the possibility of bamboo shoots death, we calibrate the probability 

of death using data and information from previous studies of bamboo growth in the scientific, 

biological, and plant science literature.4 

We use a separate Chapman-Richards model (Richards, 1959) for the growth of each of 

the three types j of bamboo products:  winter shoots 𝑠𝑤, spring shoots 𝑠𝑠, and bamboo stem 𝑏.  The 

Chapman-Richards model is given by: 

𝑌𝑗 = 𝐴𝑗 ⋅ (1 − 𝑄𝑗𝑒−𝛼𝑗𝑡𝑗)
1/(1−𝑣𝑗)

, 

where 𝑌𝑗 is the total biomass for bamboo product j in a single bamboo plant; 𝑡𝑗 is the age of bamboo 

(in days for winter and spring shoots, and in years for bamboo stem); and 𝐴𝑗 , 𝛼𝑗  , 𝑄𝑗 , 𝑣𝑗  are 

parameters whose interpretation and values for each of the bamboo product types j are discussed 

in more detail in Appendix A.  Figures A.1 and A.2 in Appendix A plot our calibrated Chapman-

Richards growth functions for bamboo shoots and bamboo stem, respectively.  

 
3 As explained in more detail in Appendix B, we set the finite horizon for the outer between-year annual dynamic 

programming problem to 11 years, well past the age 4-5 years at which Moso bamboo stems reach their maximum 

biomass (Zhang et al., 2014; Zhuang et al., 2015).  
4 We describe the empirical distributions and probabilities we use for our stochastic variables in more detail in 

Appendix B. 
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The per-period profit function is: 

𝜋(𝑠, 𝑎, 𝑑, 𝑦) = 𝜋𝑏(𝑠, 𝑎, 𝑑, 𝑦) + 𝜋𝑠(𝑠, 𝑎, 𝑑, 𝑦), 

where 𝜋𝑏(𝑠, 𝑎, 𝑑, 𝑦) is the profit from harvesting bamboo stem and 𝜋𝑠(𝑠, 𝑎, 𝑑, 𝑦) is profit from 

harvesting bamboo shoot.  Given the large number of bamboo farmers and the other features of 

the bamboo market described in Section 3 and further elaborated on in Wu et al. (2025a), we 

assume that the bamboo market is perfectly competitive and that bamboo farmers are therefore 

price takers.    

 The profit 𝜋𝑏(𝑠, 𝑎, 𝑑, 𝑦) from bamboo stem harvest is given by: 

𝜋𝑏(𝑠, 𝑎, 𝑑, 𝑦) = (𝑝𝑏 − 𝑐𝑏)𝜏𝑎𝑏𝑌𝑏, 

where 𝑝𝑏 is the bamboo stem price, 𝑐𝑏 is the unit cost of bamboo stem harvest, and 𝜏 is the 

conversion coefficient to convert bamboo stem price and bamboo stem quantity 𝑎𝑏𝑌𝑏  to 

comparable units.5   

 The profit 𝜋𝑠(𝑠, 𝑎, 𝑑, 𝑦) from bamboo shoot harvest is given by: 

𝜋𝑠(𝑠, 𝑎, 𝑑, 𝑦) = (𝑝𝑠 − 𝑐𝑠)𝜏𝑎𝑠𝑌𝑠, 

where 𝑝𝑠  is the bamboo shoots price, 𝑐𝑠  is the unit cost of bamboo shoot harvest, and 𝜏  is a 

conversion coefficient to convert bamboo shoots price and bamboo shoots quantity 𝑎𝑠𝑌𝑠  to 

comparable units.  We allow the bamboo shoots price 𝑝𝑠 and the bamboo shoots harvest cost 𝑐𝑠 to 

differ for winter shoots and spring shoots. Since winter shoots price and spring shoots price tend 

to vary a lot within and across seasons, we also allow the shoots price to be stochastic.  In 

particular, we draw the daily winter shoots price from the empirical distribution of daily winter 

shoots price, and we draw the daily spring price from the empirical distribution of daily spring 

shoots price.   

In our base case specification, we assume that the bamboo farmer is risk neutral, and 

therefore that the bamboo farmer’s per-period payoff (or utility) 𝑈(⋅) is linear in per-period profit 

𝜋(𝑠, 𝑎, 𝑑, 𝑦): 

𝑈(𝜋(𝑠, 𝑎, 𝑑, 𝑦)) = 𝜋(𝑠, 𝑎, 𝑑, 𝑦). 

Since the bamboo farmer faces multiple sources of uncertainty (precipitation, weather, and 

shoots death), in an alternative specification we allow the bamboo farmer to be risk averse, and 

 
5 The Chapman-Richard’s model predicts biomass 𝑌𝑏  and  𝑌𝑠 in units of kilograms of dry weight. In contrast, our 

shoots and stem price are in units of yuan per kilogram of actual weight, which contains both biomass and water.  We 

use a conversion coefficient 𝜏 to convert biomass in dry weight into its actual weight (which contains both biomass 

and water).   
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use a constant relative risk aversion (CRRA) functional form for the farmer’s per-period payoff 

(or utility) 𝑈(⋅) as a function of per-period profit 𝜋(𝑠, 𝑎, 𝑑, 𝑦): 

𝑈(𝜋(𝑠, 𝑎, 𝑑, 𝑦)) =
𝜋(𝑠,𝑎,𝑑,𝑦)1−𝜂

1−𝜂
 , 

where 𝜂 is the coefficient of constant relative risk aversion.  When 𝜂 = 0, the bamboo farmer is 

risk neutral, and the per-period payoff corresponds to the linear per-period payoff function from 

our base case specification. 

 The bamboo forest manager chooses the bamboo stem harvest strategy and the bamboo 

shoot harvest strategy to maximize the present discounted value (PDV) of the entire stream of per-

period payoffs.  The value function, which is the present discounted value of the entire stream of 

per-period payoffs when the bamboo shoot harvest and bamboo stem harvest decisions are chosen 

optimally, is given by the following Bellman equation: 

𝑉(𝑠, 𝑑, 𝑦) = max
𝑎=(𝑎𝑏,𝑎𝑠)

𝑈(𝜋(𝑠, 𝑎, 𝑑, 𝑦)) + 𝛽𝐸[𝑉(𝑠′, 𝑑′, 𝑦′)|𝑠, 𝑎, 𝑑, 𝑦]. 

Since we nest an inner finite-horizon within-year daily dynamic programming problem 

within an outer finite-horizon between-year annual dynamic programming problem, we use two 

different discount factors 𝛽: a daily discount factor 𝛽𝑑 and an annual discount factor 𝛽𝑦.  We set 

the daily discount factor to be 𝛽𝑑 = 𝛽𝑦
1 365⁄

, which yields an annual discount factor of 𝛽𝑦 over 

365 days.  

For the transition density for number of bamboo shoots within a year: during each year y, 

the number of bamboo shoots will change via the bamboo shoots harvest decision 𝑎𝑠. For the 

transition density for number of bamboo plants, the number of bamboo stems 𝑛𝑏  changes via the 

bamboo stem harvest decision 𝑎𝑏.  Bamboo stem harvest can occur any day of year. In addition, 

since bamboo shoots grow into bamboo stem after the end of spring shooting, the number of 

bamboo stems 𝑛𝑏 also increases by the number of bamboo shoots that remain at the end of the last 

day of spring shooting.   

The transition density for number of bamboo shoots between years is more complicated.  

The number of bamboo shoots at the beginning of the year depends on the number of remaining 

bamboo stem at the beginning of the year (remaining after bamboo stem are harvested the previous 

year): the more bamboo stem, the more rhizomes there are underground, and the more bamboo 

shoots that can grow (Li et al., 2016; Zhang and Ding, 1997).  In addition, to capture the positive 

correlation of the number of bamboo shoots with precipitation during the months of July and 
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August of the previous bamboo growth year (Zhang and Ding, 1997), we allow rain to be stochastic 

and include a state variable, precip, which is a dummy for the cumulative daily precipitation over 

July and August of that bamboo growth year exceeding a high precipitation threshold that day.  

For each township, for each day in July and August, we take a draw from the daily empirical 

probability of high precipitation (precip = 1) for that township.6  The number of bamboo shoots 

𝑛𝑠  is bounded below by 0 and bounded above by an upper bound 𝑛𝑠̅̅ ̅ that reflects in part the 

carrying capacity for bamboo plants.   

Since this is a finite horizon problem, the value functions and policy functions are functions 

of both measures of time, year y and day-in-year d.  The terminal condition for the outer annual 

backwards iteration is that there is no continuation value after the last day of the last year. The 

terminal condition for the inner day-in-year backwards iteration is that, except in the last year, 

when there is no continuation value after the last day of the last year, the continuation in the last 

day of the year is the expected value of the value function on the first day of the next year.  

We describe our base case parameter values in Appendix B.  We run several specifications 

of our numerical model that vary the values of the parameters. For each specification, we solve for 

the value function, the bamboo shoot harvest policy function, and the bamboo stem harvest policy 

function, each as a function of the state variables (number of bamboo stem 𝑛𝑏, number of bamboo 

shoots 𝑛𝑠, high precipitation dummy precip, and shoots price 𝑝𝑠).  Since our dynamic model nests 

an inner finite-horizon within-year daily dynamic programming problem within an outer finite-

horizon between-year annual dynamic programming problem, there is a separate value function 

and policy function (as functions of state variables) for each day of each year. 

 

5. Results of Numerical Model 

Our numerical model yields several notable results. For the optimal bamboo stem harvest, 

we find that it is generally optimal to wait to harvest any bamboo stem until the fourth bamboo 

growth year or later, after their growth has begun to slow down, and to harvest bamboo stem at the 

beginning of the year (Figures C.1 and C.2 in Appendix C). The intuition is as follows. Since 

bamboo stems continue to grow each year until age 4-5 years, and bamboo stem growth begins to 

slow down around the end of the fourth year and beginning of the fifth year (Zhang et al., 2014; 

 
6 We describe how we model stochastic rain and estimate the daily probability of high precipitation for each township 

in more detail in Appendix B. 
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Zhuang et al., 2015), and since the number of bamboo shoots at the beginning of each year depends 

on the number of bamboo stem remaining at the beginning of each year (Li et al., 2016; Zhang and 

Ding, 1997), it is optimal to wait until the fourth year or later to harvest any bamboo stem in order 

to allow bamboo stem biomass to accumulate, and to make bamboo shoots harvest possible for 

multiple years.  Moreover, after bamboo stem growth has slowed down, any increase in bamboo 

stem biomass from delaying bamboo stem harvest past the beginning of the year will be small 

since the number of bamboo shoots at the beginning of that year was already determined by the 

number of bamboo stem remaining at the beginning of that year; it is therefore optimal to harvest 

bamboo stem at the beginning of the bamboo growth year it is being harvested.   

For the optimal bamboo shoot harvest (Figure 2), we find that it is generally optimal to 

harvest bamboo shoots each year that there are bamboo shoots, starting from the second bamboo 

growth year.  The intuition is as follows.  The number of bamboo shoots at the beginning of each 

year depends on the number of bamboo stem remaining at the beginning of each year.  In the first 

year, when all the bamboo is in the form of bamboo shoots, it is generally optimal to forego 

harvests so that the bamboo shoots can grow into bamboo stem at the end of the first year, which 

would then result in there being both bamboo shoots and bamboo stem at the beginning of the 

second year.  It is then optimal to harvest the bamboo shoots each year for which there are bamboo 

shoots, since starting from the second bamboo growth year onwards the number of bamboo shoots 

at the beginning of each year is not affected by the bamboo shoot harvest in the previous year, but 

depends instead on number of bamboo stem remaining at the beginning of each year. 

In terms of within-year timing for any winter shoots harvest, we find that even if there is a 

possibility of shoots death, it is generally optimal to wait at least until end of October and when 

winter shoots price is high to do any winter shoots harvest.  This is because over 50% of winter 

shoots growth takes place during November (Wei et al., 2017).  This result is consistent with the 

traditional bamboo management guidance to avoid harvesting too many winter shoots before 

spring shoots emerge, in order to foster a new bamboo forest (Forestry Department of Hunan 

Province, 2008).    

If the number of shoots is very low, however, the winter shoots price is high, and there is 

a possibility of shoots death, it may be optimal to harvest some winter shoots earlier, including in 

the first bamboo growth year (Figure C.3 in Appendix C).  The intuition is that with very few 

winter shoots and the possibility of shoots death, it may be worthwhile to harvest earlier if the 
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winter shoots price is high even though the shoots have less biomass because the farmer faces a 

non-trivial possibility that all of the very few shoots may die before they are harvested.  

 Likewise, if the bamboo farmer is risk averse and there is a possibility of shoots death, it 

may be optimal to harvest some winter shoots earlier even when the winter shoots price is low 

(Figure C.4 in Appendix C). With the possibility of shoots death, it may be worthwhile to harvest 

earlier even though the shoots have less biomass for a risk averse farmer since the expected 

marginal utility from waiting for the shoots to accumulate more biomass may be lower than the 

opportunity cost from any foregone sure profits from harvesting winter shoots earlier before they 

die. 

In terms of within-year timing for any spring shoots harvest, we find that, unless the spring 

shoots price is high, it is optimal to wait until last days of spring shooting for which spring shoots 

are marketable to do any spring shoots harvest.  The intuition is that the more time the spring 

shoots are given to grow during spring shooting, the more biomass there is. 

Figure 3 presents a sample set of optimal trajectories for bamboo stem harvest, shoots 

harvest, number of bamboo stem, and number of shoots.  Our solution for optimal bamboo forest 

management might also characterize the optimal forest management policy for other forests that 

produce products (such as fruits, nuts, sap, and maple syrup) that grow on trees that are renewable 

and can be harvested at more frequent intervals than the trees themselves.   

 

6. Comparing Optimal Bamboo Management with Actual Harvest Decisions 

We compare the optimal bamboo shoot and bamboo stem harvest policy as given by our 

numerical dynamic model with our data on actual bamboo shoot and bamboo stem harvests on 35 

bamboo plots in Zhejiang province. 

Figure 4 presents time series plots of the optimal vs. actual number of bamboo stem 

harvested by initial age class on each bamboo plot. Actual bamboo stem harvests tend to be close 

to what our model stipulates to be optimal: bamboo stem harvests do not take place until the fourth 

bamboo growth year or later. Nevertheless, given the relatively low bamboo stem prices during 

the time period of our data, farmers might do even better by waiting even more years before 

harvesting bamboo stem. 

Figure 5 presents time series plots of the optimal vs. actual number of bamboo shoots 

harvested, as imputed above, on each bamboo plot. Actual shoots harvests also tend to be close to 
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what our model deems to be optimal: bamboo shoots harvest take place when shoots prices are 

high; and if the number of shoots is very low and there is a possibility of winter shoots death, 

winter shoots are harvested earlier when the shoots price is high, including in the first bamboo 

growth year.  Nevertheless, the frequency and/or quantity of actual winter shoots harvests might 

be higher than optimal. 

Previous anecdotal evidence suggests that winter shoots have sometimes been over-

harvested for high profit, leaving too few shoots for future bamboo forest development (Wu et al., 

2025a).  We find that, for the bamboo plots in our data set, even when there are few shoots, and 

even with the possibility of winter shoots death and high winter shoots prices, the frequency and/or 

quantity of winter shoots harvest might be higher than optimal. 

Thus, results of our comparison between the optimal bamboo stem harvest and bamboo 

shoot harvest given by our dynamic model with the data on actual bamboo stem harvests and 

bamboo shoots harvest is that actual bamboo stem and bamboo shoot harvests come close to 

approximating the optimal harvesting strategy, but have some features that differ from what our 

model suggests to be optimal. 

We also compare actual and optimal net present value (NPV), where net present value 

(NPV) is defined as the present discounted value (PDV) of the entire stream of daily profits.  First, 

we calculate and compare actual and optimal NPV during the days with data, where optimal NPV 

during the days with data is calculated using the actual initial states and actual daily prices and 

precipitation; and the actual NPV during the days with data is calculated using the actual daily 

actions, states, prices, and precipitation.  Second, we calculate and compare optimal expected NPV 

over the entire 11-year horizon, where optimal expected NPV over the entire 11-year horizon is 

given by the value function evaluated at the initial states, and takes an expectation over stochastic 

shoots prices and precipitation; and where actual expected NPV over the entire 11-year horizon is 

the actual NPV during the days with data calculated above plus the discounted continuation value 

evaluated at the actual state at end of data and assumes optimal behavior after the last day of data. 

As seen in the NPV results in Table 1, the optimal strategy yields a higher NPV than actual 

harvests do, both during the days with data, and also in expectation over the entire 11-year horizon.  

The optimal strategy does even better than actual harvests in expectation over the 11-year horizon, 

since the optimal strategy may involve forgoing some profits in the short run in order to benefit 
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from higher and more sustained profits in the long run, and thus we see even more benefits of the 

optimal strategy in expectation over 11 years than we see in just the 2 years of our data.    

 

7. Dynamic Structural Econometric Model  

To understand the beliefs and perceptions of bamboo farmers that underlie and rationalize 

their bamboo shoot and bamboo stem harvesting decisions as revealed in the data, and to help us 

assess and mitigate sources of differences between actual behavior and the optimal strategy given 

by our model, we use our nested stochastic dynamic bioeconomic model to develop a dynamic 

structural econometric model.  We innovate upon the nested fixed point maximum likelihood 

estimation developed by Rust (1987, 1988) by nesting our nested stochastic dynamic bioeconomic 

model within the maximum likelihood estimation, so that the nested fixed point calculation itself 

also involves a nest, thereby yielding an expanded technique we refer to as “nested nested fixed 

point maximum likelihood estimation”.  

Since there is a large set of parameters in our nested stochastic dynamic bioeconomic 

model, we are unable to identify the entire set of parameters simultaneously.  Instead, we run 

several different specifications of our structural model, each focusing on estimating a different set 

of structural parameters 𝜃, holding the remaining parameters fixed at the values we calibrated for 

our numerical model based on research and information on Moso bamboo from the biological 

sciences and in economic data.  For each specification, the respective structural parameters 𝜃 

provide suggestive evidence for the beliefs and perceptions of bamboo farmers regarding that 

parameter 𝜃 .  We use any differences between the estimated structural parameters 𝜃  and the 

respective values we calibrated based on biological sciences and economic data to help us assess 

and mitigate sources of differences between actual behavior and the optimal strategy given by our 

model. 

 

7.1. Nested nested fixed point maximum likelihood estimation  

To account for unobservable state variables that bamboo farmers observe (but we do not 

observe) when they make their spraying and harvesting decisions, we next expand the per-period 

payoff to each choice 𝑎  to include both a deterministic component 𝑈0(𝜋(𝑠, 𝑎, 𝑑, 𝑦); 𝜃)  and a 

stochastic component 𝜀(𝑎).  The deterministic component 𝑈0(𝜋(𝑠, 𝑎, 𝑑, 𝑦); 𝜃) of the per-period 

payoff in our structural model is equal to the bamboo farmer’s per-period payoff 𝑈(𝜋(𝑠, 𝑎, 𝑑, 𝑦)) 
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from the numerical model; as before, we assume the bamboo farmer is risk neutral in the base case 

and allow for risk aversion in an alternative specification. The stochastic component to the per-

period payoff to each action is an unobserved shock 𝜀(𝑎) associated with that action choice 𝑎 that 

is assumed to be distributed i.i.d. extreme value across days d, years t, farmers i, and actions 𝑎. 

The value function incorporating these unobserved shocks 𝜀(𝑎) is now given by:   

𝑉(𝑠, 𝑑, 𝑦; 𝜃) = max
𝑎=(𝑎𝑏,𝑎𝑠)

𝑈0(𝜋(𝑠, 𝑎, 𝑑, 𝑦); 𝜃) + 𝜀(𝑎) + 𝛽𝐸[𝑉(𝑠′, 𝑑′, 𝑦′; 𝜃)|𝑠, 𝑎, 𝑑, 𝑦]. 

The conditional choice probabilities Pr(𝑎|𝑠, 𝑑, 𝑦; 𝜃)are given by: 

Pr(𝑎|𝑠, 𝑑, 𝑦; 𝜃) =
exp(𝑈0(𝜋(𝑠,𝑎,𝑑,𝑦);𝜃)+𝛽𝑉𝑐(𝑠,𝑎,𝑑,𝑦;𝜃))

∑ exp(𝑈0(𝜋(𝑠,𝑎̃,𝑑,𝑦);𝜃)+𝛽𝑉𝑐(𝑠,𝑎̃,𝑑,𝑦;𝜃))
𝑎̃

 , 

where 𝑉𝑐(𝑠, 𝑎, 𝑑, 𝑦; 𝜃) is the continuation value, which is the expected value of the value function 

next period given the states and actions this period: 

𝑉𝑐(𝑠, 𝑎, 𝑑, 𝑦; 𝜃) = 𝐸[𝑉(𝑠′, 𝑑′, 𝑦′; 𝜃)|𝑠, 𝑎, 𝑑, 𝑦]. 

We use a nested fixed point maximum likelihood estimation to find the parameters 𝜃 that 

maximize the log-likelihood function 𝐿(𝜃), which is the following function of the conditional 

choice probabilities Pr(𝑎|𝑠, 𝑑, 𝑦; 𝜃):   

𝐿(𝜃) = ∑ ∑ ∑ ln Pr(𝑎𝑖𝑑𝑦|𝑠𝑖𝑑𝑦, 𝑑, 𝑦; 𝜃)𝑦𝑑𝑖 . 

Building on the nested fixed point maximum likelihood estimation technique developed by 

Rust (1987, 1988), our maximum likelihood estimation methodology nests an inner finite-horizon 

within-year daily dynamic programming problem within an outer finite-horizon between-year 

annual dynamic programming problem to solve for the continuation values and conditional choice 

probabilities for each day d in each year y at each evaluation of the likelihood function.  Thus, the 

nested fixed point calculation itself involves a nest -- our nested stochastic dynamic bioeconomic 

model, an expanded technique we thereby refer to as “nested nested fixed point maximum 

likelihood estimation”.   

In one specification, the structural parameter 𝜃  we estimate is the growth rate 𝛼𝑠𝑤
 for 

winter shoots.  In a second specification, the structural parameters 𝜃 we estimate are parameters 

in the shoots harvesting cost, namely the winter shoots harvest cost parameter 𝑐𝑠𝑤
, the spring 

shoots harvest cost parameter 𝑐𝑠𝑠
, and the shoots harvest cost convex cost parameter 𝑐𝑠2

.  In a third 

specification, the structural parameter 𝜃 we estimate is the daily shoots decline probability during 

winter shooting.  In a fourth specification, we allow for risk aversion and the structural parameter 

𝜃 we estimate is the coefficient of constant relative risk aversion 𝜂.  
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Identification of the parameters 𝜃 comes from the differences between per-period payoffs 

across different action choices, which in finite-horizon dynamic discrete choice models are 

identified when the discount factor 𝛽, the distribution of the choice-specific shocks 𝜀(𝑎), and the 

final period continuation value are fixed (Rust, 1994; Magnac and Thesmar, 2002; Abbring, 2010).  

In particular, because the discount factor 𝛽 and the distribution of the choice-specific shocks 𝜀(𝑎) 

are fixed and the final period continuation value is zero, the parameters in our model are identified 

because each term in the deterministic component 𝜋0(𝑠, 𝑎, 𝑑, 𝑦; 𝜃)  of the per-period payoff 

depends on the action 𝑎 being taken in day d in year y, and therefore varies based on the action 

taken; as a consequence, the parameters do not cancel out in the differences between per-period 

payoffs across different action choices and are therefore identified.  For example, the winter shoots 

harvest cost parameter 𝑐𝑠𝑤
 is identified in the difference between the per-period payoff from 

choosing to harvest winter shoots and the per-period payoff from any daily action choice 𝑎 that 

does not involve harvesting winter shoots.  

In a fifth specification, the structural parameter 𝜃 we estimate is the annual discount factor 

𝛽𝑦.  In general, the discount factor 𝛽 is not identified in dynamic structural econometric models. 

In order to identify the discount factor 𝛽 in a dynamic structural econometric model, one needs a 

variable that affects the transition density of state variables that affect per-period profits, but does 

not itself directly affect the per-period profits except through its effect on the transition density 

(Fang and Wang, 2015). In our case, our variable for precipitation over the months of July and 

August does not directly affect daily profits except through its effect on the number of bamboo 

shoots at the beginning of the subsequent bamboo growth year. Thus, in our case, we can 

potentially identify the discount factor 𝛽𝑦. 

Standard errors are formed by a non-parametric bootstrap.  Bamboo plots are randomly 

drawn from the data set with replacement to generate 100 independent panels each with the same 

number of bamboo plots as in the original data set. The structural model is run on each of the new 

panels. The standard errors are then formed by taking the standard deviation of the parameter 

estimates from each of the panels.  

 

7.2. Results 

Table 2 presents the results of the specification of the dynamic structural model in which 

the structural parameter 𝜃 we estimate is the growth rate 𝛼𝑠𝑤
 for winter shoots. Our structural 
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parameter estimate for the winter shoots growth rate 𝛼𝑠𝑤
 of 0.272 for the pooled sample is larger 

than the winter shoots growth rate 𝛼𝑠𝑤
 we calibrated based on biological research and information 

on winter shoots to be 0.016.  Thus, the harvesting behavior of the bamboo farmers in our data can 

be rationalized by high perceived growth rate for winter shoots.  In other words, bamboo farmers 

are acting as if they perceive or believe the growth rate for winter shoots to be higher than may 

actually be the case based on data and information on winter shoots from plant scientists.  Figure 

C.5 in Appendix C plots the bamboo farmers’ perceived Chapman-Richards growth function for 

winter shooting and spring shooting based on our structural parameter estimates for the winter 

shoots growth rate.  Thus, the high quantity and frequency of winter shoots harvests we see in the 

data can be rationalized by perceived growth rate for winter shoots that is higher than may actually 

be the case based on data and information on winter shoots from plant scientists. 

Table 3 presents the results of the specification of the dynamic structural model in which 

the structural parameters 𝜃 we estimate are parameters in the shoots harvesting cost, namely the 

winter shoots harvest cost parameter 𝑐𝑠𝑤
, the spring shoots harvest cost parameter 

ssc , and the 

shoots harvest cost convex cost parameter 𝑐𝑠2
.  We find that the bamboo farmers in our data are 

acting as if they perceive or believe spring shoots harvest costs to be lower higher than the actual 

monetary cost, and that they perceive or believe high convex costs to shoots harvest.  The high 

perceived convex costs to shoots harvest may explain why we see a high frequency of winter 

shoots harvests in the data.  

Table C.1 in Appendix C presents the results of the specification of the dynamic structural 

model in which the structural parameter 𝜃 we estimate is the daily shoots decline probability 

during winter shooting.  We find that the harvesting behavior of the bamboo farmers in our data 

can be rationalized by a daily winter shoots decline probability of zero.  We rerun our numerical 

nested stochastic dynamic bioeconomic model using a daily winter shoots decline probability of 

zero. Figure C.6 in Appendix C compares the resulting optimal bamboo shoots harvests with the 

actual data (optimal bamboo stem harvests remain unchanged from before, and the respective 

figure is identical to Figure 4), and Table C.2 in Appendix C compares resulting optimal NPV with 

actual NPV.  Results suggest that using the perceived daily winter shoots decline probability of 

zero estimated from the structural model does not substantially improve the fit of the model; while 

the optimal strategy may better match spring shoots harvest during the second year of our data set 

(see, for example, initial age class 0 in the second year of data following the second dashed red 
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vertical line) when using the structural parameter estimate (Figure C.6), the calibrated parameter 

better explains the actual winter shoots harvest (Figure 5).  In addition, the difference between 

optimal and actual NPV is higher under the structural parameter estimate (Table C.2) than under 

the calibrated parameter (Table 1).  Moreover, the most cited reason among bamboo farmers we 

interviewed for harvesting bamboo shoots earlier during winter shooting is the probability that 

shoots might not survive (Wu et al., 2025a).  For these reasons, it is unlikely that the discrepancy 

between actual and optimal decisions is due to bamboo farmers misperceiving the daily winter 

shoots decline probability to be zero.  

Table 4 presents the results of the specification of the dynamic structural model in which 

we allow for risk aversion and the structural parameter 𝜃 we estimate is the coefficient of constant 

relative risk aversion 𝜂.  We find that the harvesting behavior of the bamboo farmers in our data 

for the pooled sample and for Sian Township can be rationalized by a coefficient of constant 

relative risk aversion of 𝜂 = 0.8.  In contrast, bamboo farmers in Shanchuan Township appear to 

be risk neutral, as the coefficient of constant relative risk aversion 𝜂 for the subsample of farmers 

in Shanchuan Township is statistically insignificant. We rerun our numerical nested stochastic 

dynamic bioeconomic model using a coefficient of constant relative risk aversion of 𝜂 = 0.8.  

Figure C.7 in Appendix C compares the resulting optimal bamboo shoots harvests with the actual 

data (optimal bamboo stem harvests remain unchanged from before, and the respective figure is 

identical to Figure 4), and Table C.3 in Appendix C compares resulting optimal welfare with actual 

welfare, where welfare is defined as the present discounted value (PDV) of the entire stream of 

daily payoffs.   When farmers are risk averse (with 𝜂 = 0.8), the optimal winter shoots harvests 

are higher in frequency and quantity, which may better match the actual winter shoots harvests 

(Figure C.7), though risk neutrality (Figure 5) better matches the actual spring shoots harvest 

during the second year of our data set (see, for example, initial age class 3 in the second year of 

data following the second dashed red vertical line).  

Table C.4 in Appendix C presents the results of the specification of the dynamic structural 

model in which the structural parameter 𝜃 we estimate is the annual discount factor 𝛽𝑦.  Results 

show the discount factor 𝛽𝑦 is close to 1, so the bamboo farmers in our data set do care about the 

future, which rules out myopic behavior as a possible source of discrepancy between actual and 

optimal decisions.  
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7.3. Discussion and policy implications 

Results of our dynamic structural econometric model suggest three possible sources of 

differences between actual and optimal harvests: a higher perceived winter shoots growth rate, 

more convex costs to shoots harvest, and risk aversion.  Each of these three channels would explain 

why actual winter shoots harvests in the data are higher and more frequent than our model suggests 

is optimal.   

Since the winter shoots growth rate we calibrate is based on research and information on 

Moso bamboo from biological science, the parameter value we use likely reflects actual winter 

shoots growth.  Thus, if bamboo farmers perceive the winter shoots growth rate to be higher than 

the what it actually is, this is a misperception that leads to a loss in farmer NPV (as seen in Table 

1) and can be addressed via programs and policies that better inform farmers about winter shoot 

growth.   

As for the high convex costs to harvesting shoots, since we have less information on costs 

and since costs can vary by farmer, we therefore feel less confident that the convexity parameter 

we use for our model reflects the true convexity of costs for all bamboo farmers; it is therefore 

very possible that the structural estimate for the convexity of shoots harvesting costs may better 

reflect the convexity of all shoots harvesting costs, monetary and otherwise, that farmers face.  

Nevertheless, as the high convexity of costs leads to a loss in farmer NPV, there may be scope for 

improving bamboo farmer profits and sustainability through initiatives that address the reason 

costs are so convex.  For example, if the convex costs arise due to labor shortages or labor 

constrains that preclude a farmer from harvesting a large quantity of shoots at one time, then 

policies that alleviate the labor market frictions might be beneficial. 

As for risk aversion, results of our structural model suggest that bamboo farmers in Sian 

Township are risk averse while the bamboo farmers in Shanchuan Township are not.  As risk 

aversion leads to lower profits, there may be scope for improving bamboo farmer profits and 

sustainability through initiatives, such as crop insurance, that help farmers reduce, share, or 

manage the risk they face. 

 

8.  Conclusion 

When there is both uncertainty and interdependent forest products, the interaction between 

these two phenomena leads to a complicated set of trade-offs; developing a model at this nexus is 
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the primary innovation of our paper.  In particular, we develop a nested stochastic dynamic 

bioeconomic model of optimal forest management under uncertainty for interdependent products 

that differ in their growth cycles, rates of growth, lengths of growing periods, and potential harvest 

frequency.  Our model enables us to assess the optimality of actual decisions made by forest 

managers and to develop a dynamic structural econometric model to understand the beliefs and 

perceptions that underlie and rationalize their management strategies.  As depicted in Figure 1, we 

use an iterative approach to developing and refining our model to ensure that it best reflects reality.     

We apply our model to bamboo forests, which generate two interdependent products: 

bamboo shoots and bamboo stems. We compare the optimal bamboo stem harvest and bamboo 

shoot harvest policy with actual data on bamboo shoot and bamboo stem harvests in China.  We 

find that the actual bamboo stem and bamboo shoot harvests come close to approximating the 

optimal harvesting strategy, though some differences remain.  First, given relatively low bamboo 

stem prices, farmers might do even better by waiting even more years before harvesting bamboo 

stem.  Second, for the bamboo plots in our data set, even when there are few shoots, and even with 

the possibility of winter shoots death and high winter shoots prices, the frequency and/or quantity 

of winter shoots harvest might be higher than optimal, and contrary to the traditional bamboo 

management guidance to avoid harvesting too many winter shoots before spring shoots emerge, in 

order to foster a new bamboo forest (Forestry Department of Hunan Province, 2008).  The results 

are consistent with anecdotal evidence that winter shoots have sometimes been over-harvested for 

high profit, leaving too few shoots for future bamboo forest development. 

To further understand the beliefs and perceptions of bamboo farmers that underlie and 

rationalize their bamboo shoot and bamboo stem harvesting decisions as revealed in the data, and 

to help us assess and mitigate sources of differences between actual behavior and the optimal 

strategy given by our model, we use our nested stochastic dynamic bioeconomic model to develop 

a dynamic structural econometric model to estimate different subsets of the parameters 

econometrically.  Results of our dynamic structural econometric model suggest three possible 

sources of differences between actual and optimal harvests: a higher perceived winter shoots 

growth rate, more convex costs to shoots harvest, and risk aversion.  To the extent that the 

overharvesting of winter shoots and its resulting loss in farmer NPV is due to farmers 

misperceiving the winter shoots growth rate, this inefficiency can be addressed via programs and 

policies that better inform farmers about winter shoot growth.  Similarly, if farmers are facing 
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highly convex costs due to labor shortages or labor constraints that preclude them from harvesting 

a large quantity of shoots at one time, then policies that alleviate the labor market frictions might 

be beneficial.  Likewise, there may be scope for improving bamboo farmer profits and 

sustainability through initiatives, such as crop insurance, that may make bamboo farmers less risk 

averse. 

There are several important features of bamboo forest management that are at least partially 

captured by our model.  These include winter shoots growth, variation in bamboo shoot price and 

bamboo stem price over time; capacity and/or labor constraints on the amount that is feasible to 

harvest in one day; the possibility of shoots death; risk aversion; and parameter values that differ 

from the ones we use in the model.  The remaining differences between actual harvests and optimal 

bamboo harvests may reflect features that we do not capture in our model, including liquidity 

constraints and/or alternative crops or uses of the land.  If some of the differences between actual 

harvests and optimal harvests arise because of economic constraints such as liquidity constraints, 

it is possible that some of these constraints can be ameliorated by well-designed institutions or 

policies.  Our results have important implications for bamboo forest management and, to the extent 

that some of the differences between actual harvests and optimal bamboo harvests reflect possible 

sub-optimal behavior on the part of Moso bamboo forest managers, for ways to improve Moso 

bamboo forest management and policy.   

The methodology we develop and employ – including our novel nested stochastic dynamic 

bioeconomic model, our “nested nested fixed point maximum likelihood estimation” technique, as 

well as our iterative approach to model development and refinement (Figure 1) – is relevant and 

applicable to the sustainable management of forests under uncertainty in a variety settings wherein 

the forests produce products (such as fruits, nuts, and maple syrup) that grow on trees, that are 

renewable, and can be harvested at more frequent intervals than the trees themselves.  Our 

methodology may also be helpful in the examination of other production processes that generate 

multiple interdependent products, such as cattle production (Wu et al., 2025b).  In addition, our 

iterative approach to model development and refinement (Figure 1) may serve as a blueprint for 

integrating other insights from natural sciences into economics.  Finally, the notion of using 

structural models to provide suggestive evidence for the beliefs and perceptions of decision-

making agents regarding various scientific and economic parameters, and to help assess and 

mitigate sources of differences between actual behavior and the optimal strategy given by an 
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economic model, may provide an important role for structural models in economic analysis in 

contexts wherein information about parameter values may already be available, for example from 

the natural sciences or economic data. 
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Figure 1.  Iterative Approach to Model Development and Refinement 

  
 

Notes: We use an iterative approach to developing and refining the model to ensure that it best reflects 

reality.  We use research and information on Moso bamboo from the biological sciences, economic data, 

and interviews we conducted with bamboo forest managers to develop our model and calibrate the 

parameters.  We compare the optimal strategy given by our model to data on actual bamboo shoot and 

bamboo stem harvests. After obtaining initial results from our numerical model, we then went back to 

Zhejiang province to interview farmers to better understand their beliefs, perceptions, and decision-making, 

and used that information to further refine our model and better reconcile our model with the actual data.   

Then, to further understand the beliefs and perceptions of bamboo farmers that underlie and rationalize their 

harvesting decisions, and to help us assess and mitigate sources of differences between actual behavior and 

the optimal strategy given by our model, we use our nested stochastic dynamic bioeconomic model to 

develop a dynamic structural econometric model to estimate different subsets of the parameters 

econometrically.  Since there is a large set of parameters in our nested stochastic dynamic bioeconomic 

model, we are unable to identify the entire set of parameters simultaneously.  Instead, we run several 

different specifications of our structural model, each focusing on estimating a different set of structural 

parameters, holding the remaining parameters fixed at the values we calibrated for our numerical model 

based on research and information on Moso bamboo from the biological sciences and in economic data.  

For each specification, the respective structural parameters provide suggestive evidence for the beliefs and 

perceptions of bamboo farmers regarding that parameter.   We use any differences between the estimated 

structural parameters and the respective values we calibrated based on biological sciences and economic 

data to help us assess and mitigate sources of differences between actual behavior and the optimal strategy 

given by our model.  
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Figure 2.  Daily Bamboo Shoots Harvest Policy Function  
 

 
Notes: Figure presents bamboo shoots harvest policy function for each day for each year as a function of daily shoots price when the number of shoots is a medium 

quantity (𝑛𝑠 = 25) and cumulative daily precipitation is low (𝑝𝑟𝑒𝑐𝑖𝑝 = 0), and when parameters are set at their base case values.  For each bamboo growth year, 

dashed vertical lines in red that go from the top to the bottom of the graph denote March 1 (first day of spring shooting) of each year.



35 

Figure 3.  Example of Optimal Trajectories  
 

a) Bamboo Stem Harvest 
 

 
 

b) Shoots Harvest 
 

 

c) Number of Bamboo Stem 
 

 
 

d) Number of Shoots 
 

Notes: Figure presents a simulated set of optimal trajectories for bamboo stem harvest, bamboo shoots harvest, number of bamboo stem, and number of bamboo shoots for 

each day of each year starting from a large initial number of bamboo shoots (𝑛𝑠 = 45) on the first day of the first bamboo growth year, when parameters are set at their 

base case values.  Vertical lines in red that go from the top to the bottom of the graph denote September 1 (first day of winter shooting) of each year.  Dashed vertical lines 

in red that go from the top to the bottom of the graph denote March 1 (first day of spring shooting) of each year. 
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Figure 4.  Optimal vs. Actual Bamboo Stem Harvests 
 

 
 

Notes: Time series plots of the optimal and actual number of bamboo stem harvested by initial age class. Vertical lines 

in red that go from the top to the bottom of the graph denote September 1 (first day of winter shooting) of each year.  

Dashed vertical lines in red that go from the top to the bottom of the graph denote March 1 (first day of spring shooting) 

of each year.   
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Figure 5.  Optimal vs. Actual Shoots Harvest 
 

 
 
Notes: Time series plots of the optimal vs. actual number of bamboo shoots harvested on each bamboo plot.  Vertical 

lines in red that go from the top to the bottom of the graph denote September 1 (first day of winter shooting) of each 

year.  Dashed vertical lines in red that go from the top to the bottom of the graph denote March 1 (first day of spring 

shooting) of each year. 
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Table 1.  Actual vs. Optimal Net Present Value (NPV) 

 

(a) 

 

NPV during days with data Mean (Yuan) 

Optimal 272 

Actual 127 

Optimal minus Actual 145 

 

 

(b) 

 

Expected NPV over 11-year horizon Mean (Yuan) 

Optimal 5,529 

Actual 4,007 

Optimal minus Actual 1,522 

 
Notes: Table compares actual and optimal net present value (NPV), where net present value (NPV) is 

defined as the present discounted value (PDV) of the entire stream of daily profits.  Panel (a) compares 

actual and optimal NPV during the days with data, where optimal NPV during the days with data is 

calculated using the actual initial states and actual daily prices and precipitation; and the actual NPV during 

the days with data is calculated using the actual daily actions, states, prices, and precipitation.  Panel (b) 

compares optimal expected NPV over the entire 11-year horizon, where optimal expected NPV over the 

entire 11-year horizon is given by the value function evaluated at the initial states, and takes an expectation 

over stochastic shoots prices and precipitation; and where actual expected NPV over the entire 11-year 

horizon is the actual NPV during the days with data calculated above plus the discounted continuation value 

evaluated at the actual state at end of data and assumes optimal behavior after the last day of data.
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Table 2.  Dynamic Structural Model Results: Winter Shoot Growth  
 

Structural Parameter 
Actual  

(Assumed Value) 
All Sian Shanchuan 

  (1) (2) (3) 

Winter shoots growth rate 
ws   0.016 0.272 *** 

(0.005) 

0.292 *** 

(0.045) 

0.202 *** 

(0.009) 

     

# Observations  115,290 65,880 49,410 

# Bamboo plots  35 20 15 

Notes: The structural parameter estimates are the parameter estimates from our specification of the structural model estimating the winter shoot 

growth parameter only for the entire sample (“All”), Sian Township only (“Sian”), and Shanchuan Township only (“Shanchuan”).  The actual value 

is the assumed base case parameter value we calibrated based on biological sciences and economic data. Bootstrapped standard errors in parentheses. 

Significance codes: *** p<0.001, ** p<0.01, * p<0.05 
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Table 3.  Dynamic Structural Model Results: Shoots Cost Parameters 
 

Structural Parameter 
Actual 

(Assumed Values) 
All 

  (1) 

Winter shoots harvest cost parameter 
wsc   15 14.71*** 

(4.504) 

Spring shoots harvest cost parameter 
ssc   1.5 0.61*** 

(0.117) 

Shoots harvest cost convex cost parameter 
2sc   50 114.28*** 

(1.321) 

   

   

# Observations  115,290 

# Bamboo plots  35 

Notes: The structural parameter estimates are the parameter estimates from our specification of the 

structural model estimating the shoots cost parameters only for the entire sample (“All”).  The actual values 

are the assumed base case parameter values we calibrated based on biological sciences and economic data.  

Bootstrapped standard errors in parentheses. Significance codes: *** p<0.001, ** p<0.01, * p<0.05 
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Table 4.  Dynamic Structural Model Results: Coefficient of Constant Relative Risk Aversion  
 

Structural Parameter 
Actual  

(Assumed Value) 
All Sian Shanchuan 

  (1) (2) (3) 

Coefficient of constant relative risk aversion 𝜂  0 

(risk neutral) 

0.805 *** 

(0.008) 

0.788 *** 

(0.002) 

0.121 

(0.138) 

     

# Observations  115,290 65,880 49,410 

# Bamboo plots  35 20 15 

Notes: The structural parameter estimates are the parameter estimates from our specification of the structural model allowing for risk aversion and 

estimating the coefficient of constant relative risk aversion parameter only for the entire sample (“All”), Sian Township only (“Sian”), and Shanchuan 

Township only (“Shanchuan”).  The actual value is the assumed base case parameter value.  Bootstrapped standard errors in parentheses. Significance 

codes: *** p<0.001, ** p<0.01, * p<0.05  
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Appendix A.  Chapman-Richards Growth Model 

There are multiple available models to measure the growth and productivity of a Moso 

bamboo plant. Allometric equations and logistic functions have been used for characterizing 

bamboo growth. An allometric model predicts biomass using diameter at breast height.   Biological 

studies suggest using the Chapman-Richards model (Richards, 1959), which is a flexible growth 

model for plants (Liu and Li, 2003), and has been used to predict Moso bamboo height (Yen, 2016).  

In addition to a model for bamboo stem growth, we also need a model for bamboo shoot growth. 

Bamboo shoot biomass accumulation has been described using a logistic curve (Zhou, 1998).  The 

literature constructing a growth model for bamboo shoots is sparse, however, and even less is 

known about underground winter shoot growth.  Thus, as the Chapman-Richards model is a 

generalized logistic curve, and since bamboo shoots are young bamboo plants, we adopt and 

separately parameterize separate Chapman-Richards models for winter shoot growth and spring 

shoot growth as well.   

We therefore use a separate Chapman-Richards model for the growth of each of the three 

types j of bamboo products: winter shoots 𝑠𝑤 , spring shoots 𝑠𝑠 , and bamboo stem 𝑏 .  The 

Chapman-Richards model is given by: 

𝑌𝑗 = 𝐴𝑗 ⋅ (1 − 𝑄𝑗𝑒−𝛼𝑗𝑡𝑗)
1/(1−𝑣𝑗)

, 

where 𝑌𝑗 is the total biomass for bamboo product j in a single bamboo plant; 𝑡𝑗is the age of bamboo 

(in days for winter and spring shoots, and in years for bamboo stem); and 𝐴𝑗 , 𝛼𝑗  , 𝑄𝑗 , 𝑣𝑗  are 

parameters whose interpretation and values for each of the bamboo product types j are discussed 

in more detail below. The Chapman-Richard’s model predicts biomass 𝑌𝑏   and  𝑌𝑠  in units of 

kilograms of dry weight. In contrast, our shoots and stem price are in units of yuan per kilogram 

of actual weight, which contains both biomass and water.  We use a conversion coefficient 𝜏 to 

convert biomass in dry weight into its actual weight (which contains both biomass and water).   

Our calibrated piecewise Chapman-Richards growth function for bamboo shoots, which 

combines a Chapman-Richards growth function for winter shoots with a separate Chapman-

Richards growth function for spring shoots, is presented in Figure A.1.  Our calibrated Chapman-

Richards growth function for bamboo stem growth is presented in Figure A.2.  We discuss our 

calibration in more detail below.   

  



A-2 
 

 

 

A.1.  Parameters in Chapman-Richards model of bamboo shoot growth for winter shoots 

To date there have been very few studies on Moso bamboo underground development, 

winter shoots biomass, and winter shoots growth. We calibrate our model for winter shoots growth 

to capture what previous research has found about winter shoots, and also to better match the actual 

winter shoots harvest decisions in our data.  In particular, previous research that has found winter 

shoots are dormant from December onwards (Su, 2012; Sun et al. 2017; Wei et al., 2017; Hu et al., 

2020) and that over half of winter shoots growth happens during November (Wei et al., 2017).  In 

our data, some bamboo plots have harvested winter shoots as early as late October when the winter 

shoots price is very high, which our dynamic model shows would not be optimal even with a very 

high winter shoots price if the winter shoots biomass is very low in late October. Since it is unlikely 

that farmers are so completely wrong, we additionally calibrate our winter shoots growth function 

so that their biomass in late October is higher. 

We use the following Chapman-Richards model for winter shoot growth: 

𝑌𝑠𝑤
= 𝐴𝑠𝑤

⋅ (1 − 𝑄𝑠𝑤
𝑒−𝛼𝑠𝑤𝑡𝑠𝑤 )

1/(1−𝑣𝑠𝑤)
, 

where 
wsY  is the total biomass of a winter shoot of age 𝑡𝑤𝑥

days. The shoots biomass is basically 

the dried weight of shoots. The Chapman-Richards model for winter shoot growth yields the 

following equation of motion for winter shoot biomass: 

𝑑𝑌𝑠𝑤(𝑡𝑠𝑤)

𝑑𝑡𝑠𝑤

=
𝛼𝑠𝑤

1−𝑣𝑠𝑤

𝐴𝑠𝑤
𝑄𝑠𝑤

(1 − 𝑄𝑠𝑤
𝑒−𝛼𝑠𝑤𝑡𝑠𝑤 )

1

1−𝑣𝑠𝑤
−1

𝑒−𝛼𝑠𝑤𝑡𝑠𝑤 . 

At the inflection point, where 
𝑑2𝑌𝑠𝑤(𝑡𝑠𝑤)

𝑑𝑡𝑠𝑤
2 = 0, we have: 

𝑣𝑠𝑤
= 1 − 𝑄𝑠𝑤

𝑒−𝛼𝑠𝑤𝑡𝑠𝑤 . 

For the age 𝑡𝑠𝑤
 of winter shoots, due to its relatively short period of growth, age of bamboo 

shoots is measured in days rather than years.  Winter shooting is from September 1 until February 

28.  The number of winter shooting days 𝑡𝑠𝑤
max is therefore 181 days. 

The parameter 𝐴𝑠𝑤
 is related to the maximum possible winter shoot biomass for a single 

winter shoot.  According to a video from Zhejiang province of winter shoots in late November 

2020 (“Zhejiang Local Winter Shoots Trading on Site”, 2020), it is very rare to have winter shoots 

that is 0.75 kg in Zhejiang province, which is 0.375 kg in dry biomass (using our conversion 
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coefficient that actual weight is 𝜏 = 2 times biomass in dry weight). According to Yonghua Qiu, 

a senior engineer from Suichang Bureau of Forestry (Suichang is a township in Zhejiang province), 

the maximum possible winter shoots weight could be over 0.5 kg. It is also rare to harvest winter 

shoots that is more than 1.5 kg (Zeng and Peng, 2013).  In our numerical model, we set 𝑌𝑠𝑤
max, the 

maximum possible winter shoots biomass at the end of winter shooting (day 𝑡𝑠𝑤
max), to be 0.75 kg. 

This is to say, the maximum possible winter shoots weight at the end of winter shooting will be 

1.5 kg per shoot in actual weight, and thus 0.75 kg in biomass.  We then calibrate 𝐴𝑠𝑤
, which is 

the maximum possible winter shoot biomass as the number of days goes to infinity (which is well 

past the end of winter shooting) as follows: 

𝐴𝑠𝑤
= 𝑌𝑠𝑤

max/(1 − 𝑄𝑠𝑤
𝑒−𝛼𝑠𝑤𝑡𝑠𝑤

max
)

1/(1−𝑣𝑠𝑤)
. 

For the growth rate 𝛼𝑠𝑤
 for winter shoots, the growth rate for bamboo shoots is more rapid 

than that for bamboo stem (Song et al., 2016).  To date there have been very few studies on Moso 

bamboo underground development, winter shoots biomass, and winter shoots growth. Wei et al. 

(2017) describes underground bamboo shoots development, but only have a time trend of growth 

of winter shoots in terms of individual height, not biomass.  Hu et al. (2020) study gene expression 

for each month of shoots growth from September to the following year’s April.  The number of 

genes expressed in the shoots is a measure of shoots growth activity level, as well as biomass 

accumulation. Since Hu et al. (2020) find the winter shoots express fewer genes than spring shoots 

do, we choose a growth rate 𝛼𝑠𝑤
 for winter shoots that is slightly lower than the growth rate 

ss

for spring shoots that we specify below.  In particular, since we set the growth rate 
ss for spring 

shoots to 0.036 below, and winter shoots is expressing less genes compared to spring shoots, we 

set the growth rate 𝛼𝑠𝑤
 for winter shoots to 0.016.  

For the biological constant 𝑄𝑠𝑤
, which is related to the initial winter shoot biomass at the 

beginning of winter shooting, we set 𝑄𝑠𝑤
 to 1 because we want the  biomass of winter shoots to be 

equal to 0 on day 𝑡𝑠𝑤
= 0.  

 The parameter 𝑣𝑠𝑤
 is related to the inflection point of the Chapman-Richards growth 

function, where the time rate of change in winter shoot biomass reaches its maximum. This 

allometric constant lies between zero and one for the Chapman-Richards growth model  

(Fekedulegn et al., 1999; Liu and Li, 2003).  Wei et al. (2017) study the growth of Moso 
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underground shoots by measuring individual shoot diameter from August to February the 

following year, and find that Moso bamboo shoots grow actively from late August to late 

November and have the fastest growth from early to late November, during which over half of the 

underground shoots growth takes place.  Bamboo shoots become dormant from December until 

the following March because of the cold weather (Wei et al., 2017; Hu et al., 2020).  Sun et al. 

(2017) find that underground shoots formed in September; developed into underground shoots in 

October and November. The winter shoots growth rate slowed down and almost stopped in 

December until February the following year (Sun et al. 2017). This is to say, the fastest growing 

time is around day 76 (mid November) of the entire winter shoot growth process.  We therefore 

set the winter day of inflection 𝑡𝑠𝑤
infl to be 76.  We calculate 

wsv using: 

𝑣𝑠𝑤
= 1 − 𝑄𝑠𝑤

𝑒−𝛼𝑠𝑤𝑡𝑠𝑤
infl

 

and iterating on 𝑣𝑠𝑤
 until convergence. 

 

A.2.  Parameters in Chapman-Richards model of bamboo shoot growth for spring shoots 

We use the following Chapman-Richards model for spring shoot growth: 

𝑌𝑠𝑠
= 𝐴𝑠𝑠

⋅ (1 − 𝑄𝑠𝑠
𝑒−𝛼𝑠𝑠𝑡𝑠𝑠 )

1/(1−𝑣𝑠𝑠)
, 

where 𝑌𝑠𝑠
 is the total biomass of a spring shoot of age 

sst days.  

For the age 𝑡𝑠𝑠
 of spring shoots, due to its relatively short period of growth, age of bamboo 

shoots is measured in spring shooting days rather than years.  The spring shooting period starts on 

March 1 and ends on August 31, the last day of the bamboo growth year.  In other words, shoots 

do not become bamboo stem until the end of the bamboo growth year.  This is because, as seen in 

Song et al. (2016), the bamboo still seems to grow very fast following the spring shoot growth 

function until the end of the bamboo growth year.  Thus, the number of spring shooting days 

𝑡𝑠𝑠
max we use in our numerical model is 184 days.  Bamboo shoots grow into a bamboo plant after 

the end of spring shooting (Shi et al., 2013).  

The parameter 𝐴𝑠𝑤
 is related to the maximum possible spring shoot biomass for a single 

spring shoot.  Xu et al. (2011) study the time trend of above ground biomass in Lin’an city, 

Zhejiang Province, and find that on spring shooting day 88, the spring shoot biomass is 

approximately 8.25 kg in dry weight. Song et al. (2016) shows shoots biomass at the end of August 

to be ~8 kg.  In our numerical model, we set 𝑌𝑠𝑠
max, the maximum possible spring shoots biomass 
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at the end of spring shooting (day 𝑡𝑠𝑠
max), to be 8 kg. We then calibrate 𝐴𝑠𝑠

, which is the maximum 

possible spring shoot biomass as the number of spring shooting days goes to infinity (which is well 

past the end of spring shooting) as follows: 

𝐴𝑠𝑠
= 𝑌𝑠𝑠

max/(1 − 𝑄𝑠𝑠
𝑒−𝛼𝑠𝑠𝑡𝑠𝑠

max
)

1/(1−𝑣𝑠𝑠)
. 

For the growth rate 𝛼𝑠𝑠
 for spring shoots, the growth rate for bamboo shoots is more rapid 

than that for bamboo stem (Song et al., 2016).   Based on Song et al. (2016), the growth rate for 

spring shoots at the end of April is 0.036 per day. We therefore set our spring shoot growth rate 

𝛼𝑠𝑠
 to 0.036.  

The biological constant 𝑄𝑠𝑠
is related to the initial spring shoot biomass at the beginning of 

spring shooting. Since 𝑄𝑠𝑠
is based on the biomass of spring shoots at the beginning of spring 

shooting, then this should be calculated based on the biomass at the end of winter shooting.  In 

other words, we use the biomass on the last day of winter shooting to calculate 𝑄𝑠𝑠
.  The biomass 

on the last day of winter shooting, 𝑌𝑠𝑤
max, is the Chapman-Richards growth function for winter 

shoots evaluated on the last day of winter shooting.  We then calculate 𝑄𝑠𝑠
as: 

 

𝑄𝑠𝑠
=

1−(𝑌𝑠𝑤
max 𝑌𝑠𝑠

max⁄ )
1−𝑣𝑠𝑠

1−(𝑌𝑠𝑤
max 𝑌𝑠𝑠

max⁄ )
1−𝑣𝑠𝑠 𝑒

−𝛼𝑠𝑠𝑡𝑠𝑠
max. 

The parameter 𝑣𝑠  is related to the inflection point of the Chapman-Richards growth 

function, where the time rate of change in spring shoot biomass reaches its maximum.  The 

maximum growth rate occurs at the end of April (Song et al., 2016), which is around 60 days of 

spring shooting.  We therefore set the spring day of inflection 𝑡𝑠𝑠
infl to be 60.  We calculate 

ssv using: 

𝑣𝑠𝑠
= 1 − 𝑄𝑠𝑠

𝑒−𝛼𝑠𝑠𝑡𝑠𝑠
infl

 

and iterating on 𝑣𝑠𝑠
 until convergence. 

 

A.3.  Parameters in Chapman-Richards model of bamboo stem growth 

We use the following Chapman-Richards model for bamboo stem growth: 

𝑌𝑏 = 𝐴𝑏 ⋅ (1 − 𝑄𝑏𝑒−𝛼𝑏𝑡𝑏)1/(1−𝑣𝑠𝑠), 

where 𝑌𝑏 is the total biomass of a bamboo stem of age 𝑡𝑏 years.  

For the age 𝑡𝑏  of bamboo forest in years, Moso bamboo stems reach their maximum 

biomass at age 4-5 years (Zhang et al., 2014; Zhuang et al., 2015), do not increase significantly in 
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biomass after 4.62 years (Zhuang et al., 2015), and mature at age 5-6 years (Yen and Lee, 2011). 

We assume Moso bamboo stem biomass does not increase after 𝑡𝑏
max years, and set 𝑡𝑏

maxto 8 years. 

For 𝐴𝑏 , which is related to the maximum possible bamboo stem biomass for a single 

bamboo plant in the specific area, the maximum possible bamboo biomass for a single bamboo 

plant depends on land quality such as slope, precipitation, soil type, and temperature of the bamboo 

field we are interested in. Yen (2016) calculate maximize stem biomass for Moso bamboo in 

central Taiwan in its 5th year growth to be 15.88 kg per plant with standard deviation of 2.51 kg.  

Zhang et al. (2014) find that the maximum stem biomass for an eight-year-old Moso bamboo has 

average biomass of 15.06 kg, with a standard deviation of 6.58 kg. Stem biomass accumulation 

generally slows down when Moso bamboo reaches age 5-6 years (Yen and Lee, 2011).  In our 

numerical model, based on the means in the previous literature, we set 𝑌𝑏
max , the maximum 

possible bamboo stem biomass at the end of 𝑡𝑏
max  years, to be 15.5 kg.  We then calibrate 𝐴𝑏, 

which is the maximum possible bamboo stem biomass as the number of years goes to infinity 

(which is well past 𝑡𝑏
max) as follows: 

𝐴𝑏 = 𝑌𝑏
max/(1 − 𝑄𝑏𝑒−𝛼𝑏𝑡𝑏

max
)

1/(1−𝑣𝑏)
. 

For the growth rate 𝛼𝑏 for bamboo stem, the growth rate for Moso bamboo differs with 

studies as well. According to Xu et al. (2011), the major biomass accumulation occurred along 

with the fast elongation of bamboo stem in the early stage of bamboo growth. In the stage where 

first shoot shell detached and branch emergence, bamboo biomass tripled. To estimate the biomass 

accumulation rate for Moso bamboo, we compare bamboo stem biomass in different age groups. 

According to Zhang et al. (2014), the growth rate for bamboo stem biomass over four 2-year stages 

is in the range of 0.060 to 0.196 per 2-year stage, or an average of 0.03 to 0.098 per year.  Based 

on Song et al. (2016), the growth rate after 4 months of shooting (in August before the first full 

bamboo growth year) is 0.75 per year.  In our numerical model, we set the growth rate b  for 

bamboo stem to 0.75. 

The biological constant 𝑄𝑏, which is related to the initial bamboo stem biomass at the 

beginning of the first bamboo growth year.  For bamboo stem, we model the growth of bamboo 

stem starting from the end of spring shooting, when bamboo shoots become bamboo stem.  At the 

beginning of its full bamboo growth year (i.e., at the beginning of bamboo growth year age 1), the 

initial bamboo stem biomass is the maximum bamboo shoot biomass at the end of spring shooting.  



A-7 
 

The end of spring shooting in years is 𝑡𝑏0 = (𝑡𝑠𝑤
max + 𝑡𝑠𝑠

max)/365 .  The initial bamboo stem 

biomass at the end of spring shooting (year 𝑡𝑏0) is the maximum bamboo shoot biomass 𝑌𝑠𝑠
max at 

the end of spring shooting.  We then calculate 𝑄𝑠𝑠
as: 

 

𝑄𝑏 =
1−(𝑌𝑠𝑠

max 𝑌𝑏
max⁄ )

1−𝑣𝑏

𝑒−𝛼𝑏𝑡𝑏0−(𝑌𝑠𝑠
max 𝑌𝑏

max⁄ )
1−𝑣𝑏𝑒−𝛼𝑏𝑡𝑏

max. 

The parameter 𝑣𝑏  is related to the inflection point of the Chapman-Richards growth 

function, where the time rate of change in bamboo stem biomass reaches its maximum.  In Song 

et al. (2016), the biomass accumulation is fastest after in September following spring shooting. 

Since the bamboo growth year starts September 1, this means that the inflection point takes place 

the first month of the first full bamboo growth year (bamboo growth year age 1).  We therefore set 

the year of inflection 𝑡𝑏
infl to be 1.  We calculate 𝑣𝑏 using: 

𝑣𝑏 = 1 − 𝑄𝑏𝑒−𝛼𝑏𝑡𝑏
infl

 

and iterating on 𝑣𝑏 until convergence. 
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Figure A.1.  Piecewise Chapman-Richards Growth Function for Bamboo 

Shoots 

 

 
  
Notes: We use separate Chapman-Richards growth functions for winter shooting and spring 

shooting. The first day of winter shooting is September 1.  Winter shooting is from September 1 

until February 28.  The number of winter shooting days is therefore 181 days.  The spring shooting 

period starts on March 1 and ends on August 31, the last day of the bamboo growth year.  The 

number of spring shooting days is 184 days.
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Figure A.2.  Chapman-Richards Growth Function for Bamboo Stem 
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Appendix B.  Data and Parameters 

 

B.1  Data on actual bamboo shoot and bamboo stem harvest  

We collect, translate, and transcribe individual hard-copy handwritten Chinese records on 

actual bamboo shoot harvest and bamboo stem harvest decisions on 20 meter by 20 meter bamboo 

plots in Shanchuan Township and Sian Township in Zhejiang province in China.  Our data set 

includes 35 bamboo plots over 2 bamboo growth years from March 1, 2017 to August 31, 2018: 

20 bamboo plots in Sian Township and 15 bamboo plots in Shanchuan Township.  For each 

bamboo plot, we have data on the number of bamboo stem and on the dates, quantity, and price 

received for each bamboo stem harvest and each bamboo shoots harvest.  

 

B.2.  Bamboo shoot price  

We use data on daily bamboo shoots prices for Zhejiang province over the period January 

1, 2014 to June 30, 2018 from the National Agricultural Products Business Information Public 

Service Platform operated by China’s Ministry of Commerce (National Agricultural Products 

Business Information Public Service Platform, 2018). We use the shoots prices from the Zhebei 

Jiashan wholesale market since there are more days available, since their shoots price data tends 

to be more consistent with the bamboo shoot prices that the farmers in our data set received and 

recorded in the raw bamboo plot harvest data we collected, and since the data are also more 

detailed. Generally, there no bamboo shoots are sold in July, August, and September since these 

months are formation period of shoots underground. From mid June to mid October, there are no 

shoots on the wholesale market, and thus no price available.  

We merge our daily shoots price data with our harvest data as follows.  If any bamboo 

shoots harvest took place during a particular day on a particular bamboo plot, then we use the 

bamboo shoot price that the farmer received and recorded in the raw bamboo plot harvest data we 

collected.  This means the shoots price are not necessarily the same for the 2 townships due to 

different shoots harvest activities. This also means that even for the same township, there could be 

different price for the same day if harvest took place on one bamboo plot but not another. For 

bamboo plot-days for which no bamboo shoots harvest took place, we use the daily bamboo shoots 

prices for Zhejiang province from the National Agricultural Products Business Information Public 

Service Platform (2018).  

https://translate.googleusercontent.com/translate_c?depth=1&hl=en&prev=search&rurl=translate.google.com&sl=zh-CN&sp=nmt4&u=http://nc.mofcom.gov.cn/&xid=17259,15700023,15700124,15700149,15700168,15700173,15700186,15700191,15700201,15700205&usg=ALkJrhg9-8Yo-ligZ9ywmsCeZrOBh-kFIQ
https://translate.googleusercontent.com/translate_c?depth=1&hl=en&prev=search&rurl=translate.google.com&sl=zh-CN&sp=nmt4&u=http://nc.mofcom.gov.cn/&xid=17259,15700023,15700124,15700149,15700168,15700173,15700186,15700191,15700201,15700205&usg=ALkJrhg9-8Yo-ligZ9ywmsCeZrOBh-kFIQ
https://translate.googleusercontent.com/translate_c?depth=1&hl=en&prev=search&rurl=translate.google.com&sl=zh-CN&sp=nmt4&u=http://nc.mofcom.gov.cn/&xid=17259,15700023,15700124,15700149,15700168,15700173,15700186,15700191,15700201,15700205&usg=ALkJrhg9-8Yo-ligZ9ywmsCeZrOBh-kFIQ
https://translate.googleusercontent.com/translate_c?depth=1&hl=en&prev=search&rurl=translate.google.com&sl=zh-CN&sp=nmt4&u=http://nc.mofcom.gov.cn/&xid=17259,15700023,15700124,15700149,15700168,15700173,15700186,15700191,15700201,15700205&usg=ALkJrhg9-8Yo-ligZ9ywmsCeZrOBh-kFIQ
https://translate.googleusercontent.com/translate_c?depth=1&hl=en&prev=search&rurl=translate.google.com&sl=zh-CN&sp=nmt4&u=http://nc.mofcom.gov.cn/&xid=17259,15700023,15700124,15700149,15700168,15700173,15700186,15700191,15700201,15700205&usg=ALkJrhg9-8Yo-ligZ9ywmsCeZrOBh-kFIQ
https://translate.googleusercontent.com/translate_c?depth=1&hl=en&prev=search&rurl=translate.google.com&sl=zh-CN&sp=nmt4&u=http://nc.mofcom.gov.cn/&xid=17259,15700023,15700124,15700149,15700168,15700173,15700186,15700191,15700201,15700205&usg=ALkJrhg9-8Yo-ligZ9ywmsCeZrOBh-kFIQ
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Figures B.1a and B.1b plot histograms of the daily winter shoots price during winter 

shooting and the daily spring shoots price during spring shooting, respectively, over the years 

2016-2018 for all bamboo plots in our data set. 

 

B.3.  Bamboo stem price  

There is not much price volatility in bamboo stem price within a year, and there also was 

not much of a change in bamboo stem price between years during the years of our data set.  The 

bamboo stem prices faced by the bamboo managers in our data set were 0.4 ¥/kg in 2017 and 0.38 

¥/kg in 2018 (personal communication, Mr. Jianping Pan, manager of Fumin Bamboo Shoot 

Specialized Cooperative, August 2018).   

 

B.4.  Harvest costs 

 According to Mr. Jianping Pan, manager of Fumin Bamboo Shoot Specialized Cooperative, 

bamboo harvest can be fast: one worker can harvest 1 mu (about 667 square meters) of bamboo 

per day. For bamboo stem, workers get paid daily with a rate of 300 yuan per day and harvest 

1,250 to 2,000 kg of bamboo stem. For spring shoots, workers got paid daily, with a rate of 150 to 

180 yuan per day, and can harvest 100 kg of spring shoots per day; the total harvest for each 

bamboo plot is 200-250 kg per spring shooting period. Winter shoots are more expensive and 

harder to find than spring shoots, and thus workers get paid for 300 yuan per day and can harvest 

about 15 to 20 kg per day (personal communication, Mr. Jianping Pan, manager of Fumin Bamboo 

Shoot Specialized Cooperative, August 2018).  

For the harvesting costs in our numerical model, we calculate the unit costs of harvest by 

dividing estimates of harvest per worker per day by cost per worker per day. We vary the unit cost 

sc   of bamboo shoot harvest from 300/20 ¥/kg  to 300/15 ¥/kg for winter shoots, and from 150/100 

¥/kg  to 180/100 ¥/kg for spring shoots. We set the unit cost bc  of bamboo stem harvest from 

300/2,000 ¥/kg to 300/1,250 ¥/kg.  

 

B.5.  Time 

Since the winter shooting period and the corresponding spring shooting period span two 

consecutive calendar years, we use a bamboo growth year rather than a calendar year for our  

“year”.  The first day of each bamboo growth year is the first day of winter shooting on September 
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1.  Each bamboo growth year y starts from September 1 (the first day of winter shooting) of one 

calendar year and ends on August 31 of the following calendar year.  Since bamboo stem harvest 

is possible during any day throughout the year, we model the decision on each day of the bamboo 

growth year.   Spring shooting begins on March 1 in Zhejiang province. Thus, winter shooting 

takes place from September 1 until February 28; and spring shooting starts on March 1 and ends 

on August 31, the last day of the bamboo growth year.   

 

B.6.  Finite horizon 

Generally, Moso bamboo stems reach their maximum biomass at age 4-5 years (Zhang et 

al., 2014; Zhuang et al., 2015), do not increase significantly in biomass after 4.62 years (Zhuang 

et al., 2015), and mature at age 5-6 years (Yen and Lee, 2011).  In our numerical dynamic model, 

we allow bamboo managers the possibility of letting bamboo stem grow to age 11 years, well past 

their age of maximum biomass, if it is optimal for them to do so.  Since it would be very 

economically inefficient to harvest bamboo stem after 11 years, however, we model bamboo stem 

growth with a finite horizon of 11 years.  We therefore have a finite sequence of 11 one-year finite 

horizon problems. Thus, the outer dynamic optimization problem is a between-year annual 

dynamic programming problem with a finite horizon of 11 years. 

 

B.7.  Daily probability of high precipitation 

The state variable precip is a dummy for the cumulative daily precipitation over July and 

August of that bamboo growth year exceeding a high precipitation threshold that day. We use 400 

mm as the cutoff to determine if precip is high (precip =1) or not (precip = 0).  

Since cumulative daily precipitation over July and August of a bamboo growth year varies 

within July and August of a year (and is weakly monotonically increasing), the state variable precip 

is not necessarily constant for all of July and August.  For some townships and some years, it is 

possible that precip = 0 at the beginning of July but then becomes 1 closer to the end of August.   

The daily probability of high precipitation is the probability that precip is equal to 1 (high) 

that day.  The daily probability of high precipitation is weakly monotonically increasing from July 

1 to August 31.  For each township, for each day in July and August, we calculate the daily 

empirical probability of high precipitation (precip = 1) using the latest daily precipitation data for 

the township from the National  Oceanic and Atmospheric Administration Climate Prediction 
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Center over the period 2010-2018 (NOAA, 2021).  In particular, for each township, for each of the 

62 days from July 1 and August 31, the daily empirical probability of high precipitation for that 

day for that township is calculated as the fraction of years in that township over the period 2010-

2018 for which precip = 1 on that day. 

 

B.8.  Daily probability of shoots decline 

More than half of the shoots will degenerate and die naturally before they grow into 

bamboo plants (Jiang, 2007).  In our base case, we set the daily probability of shoots decline during 

winter shooting to be 1/30, such that the number of shoots is expected to decline by approximately 

1 bin per month during winter shooting. 

 

B.9.  Discount factor 

Since we nest an inner finite-horizon within-year daily dynamic programming problem 

within an outer finite-horizon between-year annual dynamic programming problem, we use two 

different discount factors 𝛽: a daily discount factor 𝛽𝑑 and an annual discount factor 𝛽𝑦.  We set 

the daily discount factor to be 𝛽𝑑 = 𝛽𝑦
1 365⁄

, which yields an annual discount factor of 𝛽𝑦 over 

365 days.  In the base case, we set the annual discount factor to be 𝛽𝑦 = 0.9.  An annual discount 

factor of 0.9 is commonly assumed in the literature using dynamic models (see e.g., Ryan (2012); 

Lin (2013); Sears, Lim and Lin Lawell (2019); Cook and Lin Lawell (2020)). 

 

B.10.  Number of bamboo shoots  

 In our dataset we observe the weight of bamboo shoots harvested (as well as the number 

of bamboo stem and number of bamboo stem harvested), but do not observe either total number 

of shoots or the number of shoots harvested.  Ideally, we would like to convert the units for the 

bamboo shoots harvest data and any estimated weight of bamboo shoots into the number of 

bamboo shoots.  Even though we can estimate the total possible weight of bamboo shoots, the 

actual weight of bamboo shoots would be different if some bamboo shoots were previously 

harvested that season.  In addition, we cannot simply subtract the weight of bamboo shoots 

harvested earlier in the season from our estimate of the total possible weight of bamboo shoots as 

a function of bamboo stems, since those bamboo shoots that were harvested earlier in the season 

would have grown or changed in weight if they had not been harvested.  So it would be ideal if we 



B-5 

made the harvesting decision in terms of the number of bamboo shoots harvested, so that we can 

model the weight and change in weight of the remaining bamboo shoots. 

 We estimate the unobserved bamboo shoot state and control variables as follows.  First, 

for each bamboo plot and each day, we convert the weight of bamboo shoots harvest into the 

number of bamboo shoots harvested by dividing the weight of bamboo shoots harvest by the 

bamboo shoot biomass per bamboo shoot that day of the year from Chapman-Richard’s model for 

bamboo shoot growth, assuming that bamboo shoots start growing from the beginning of winter 

shooting.   

   We then impute the maximum number of bamboo shoots in the ground in the absence of 

bamboo shoot harvest for each bamboo plot in each bamboo growth year.   To do so, we apply the 

following model from Zheng, Hong and Zhang (1998) to estimate the weight of bamboo shoots in 

the ground that remain after all the bamboo shoots have been harvested that season:  

𝑤𝑏 = 0.0018 ∗ 𝑑𝑏
2.8637

, 

where 𝑤𝑏  is weight of an individual bamboo shoot and 𝑑𝑏 is its maximum diameter.  As we do 

not have data on the maximum diameter of bamboo shoots, we use data on the diameter at breast 

height (DBH) of each newly grown bamboo stem that year to represent the diameter at breast 

height of bamboo shoots if they were to grow until the end of that season.  For each bamboo plot 

and each year in our data set, we use data on the diameter at breast height (DBH) of newly grown 

bamboo stem, representing the diameter at breast height of bamboo shoots if they were to grow 

until the end of that season, to estimate the weight of a bamboo shoot if were to grow until the end 

of the season.  Then, for each bamboo plot and each year, to calculate the weight of bamboo shoots 

on this bamboo plot that are not harvested, we take the sum over all the newly grown bamboo 

stems of the respective weights of a bamboo shoot if were to grow until the end of the season for 

that bamboo plot in that year. We convert the weight of bamboo shoots that are not harvested by 

the end of the season into the number of bamboo shoots that are not harvested by dividing the 

weight of bamboo shoots not harvested by the bamboo shoot biomass per bamboo shoot from 

Chapman-Richard’s model for bamboo shoot growth, assuming that the unharvested bamboo 

shoots must have grown from the beginning of winter shooting until the last day of spring shooting.   

For each bamboo plot, to calculate the number 𝑛𝑠 of bamboo shoots at the beginning of the 

season, in the absence of any bamboo shoots harvest, we add the total number of bamboo shoots 

harvested over the season to the total number of bamboo shoots that remain unharvested at the end 



B-6 

of the season.  For each day on each bamboo plot, we calculate the bamboo shoots harvest action 

variable 𝑎𝑠 as the number of shoots harvested that day on that bamboo plot by the number 𝑛𝑠 of 

bamboo shoots on that bamboo plot at the beginning of the season, in the absence of any bamboo 

shoots harvest.  We then calculate the number 𝑛𝑠 of bamboo shoots for each day on each bamboo 

plot as the number 𝑛𝑠 of bamboo shoots on that bamboo plot the previous day that season minus 

the number of bamboo shoots harvested on that bamboo plot on the previous day that season. 

Owing to computational and state space constraints, we discretize the number of bamboo 

shoots, the number of bamboo shoots harvested, the number of bamboo stem, and the number of 

stem harvested in our numerical  model and our structural model. Although some information in 

the data is lost by discretizing the state and action variables, one advantage of having to use 

discretized variables in our numerical model and our structural model is that by discretizing the 

number of bamboo shoots, the number of bamboo shoots harvested, the number of bamboo stem, 

and the number of stem harvested, our results are robust to the exact value of the number of 

bamboo shoots, the number of bamboo shoots harvested, the number of bamboo stem, and the 

number of stem harvested within our broader size bins.  As a consequence, our results are robust 

to any imprecision and inaccuracy in our conversion of bamboo shoots weight to number of 

bamboo shoots that still lie within the respective broader size bins.  Likewise, our results are robust 

to any imprecision and inaccuracy in how we model the effects of precipitation and/or the 

possibility of shoots death that still lie within the respective broader size bins.  Thus, the 

discretization of our state and action variables is not only necessary for our numerical model and 

dynamic structural econometric model, but also enables us to best model bamboo stem and shoots 

harvesting decisions given data availability and computational constraints, and in a manner robust 

to any additional assumptions or imprecision that may be introduced if we were to instead finely 

model every last detail of every aspect of bamboo management for each and every individual 

bamboo farmer. 
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Figure B.1.  Bamboo Shoots Prices 

 
(a) Winter Shoots Prices 

 

Notes: Figure plots a histogram of the daily winter shoots price during winter shooting over 

the years 2016-2018 for all bamboo plots in our data set. 

 

 

 

(b) Spring Shoots Prices 

 

Notes: Figure plots a histogram of the daily winter shoots price during winter shooting over 

the years 2016-2018 for all bamboo plots in our data set. 
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Appendix C.  Supplementary Figures and Tables 

 

 

Figure C.1.  Optimal Bamboo Stem Harvest  

 
 

a) Bamboo Stem Harvest 

 

 
 

 

b) Number of Bamboo Stem 

 

 
Notes: Figure presents a simulated set of optimal trajectories for bamboo stem harvest and number of bamboo stem, 

for each day of each year starting from a medium initial number of bamboo shoots (𝑛𝑠 = 25) on the first day of the 

first bamboo growth year, when parameters are set at their base case values.  Vertical lines in red that go from the top 

to the bottom of the graph denote September 1 (first day of winter shooting) of each year.  Dashed vertical lines in red 

that go from the top to the bottom of the graph denote March 1 (first day of spring shooting) of each year. 
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Figure C.2.  Optimal Bamboo Stem Harvest: High Bamboo Stem Price  

 
 

a) Bamboo Stem Harvest 

 

 
 

 

b) Number of Bamboo Stem 

 

 
 

Notes: Figure presents a simulated set of optimal trajectories for bamboo stem harvest and number of bamboo stem, 

for each day of each year starting from a medium initial number of bamboo shoots (𝑛𝑠 = 25) on the first day of the 

first bamboo growth year, when the bamboo stem price is high, and when all other parameters are set at their base 

case values.  Vertical lines in red that go from the top to the bottom of the graph denote September 1 (first day of 

winter shooting) of each year.  Dashed vertical lines in red that go from the top to the bottom of the graph denote 

March 1 (first day of spring shooting) of each year. 
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Figure C.3.  Daily Bamboo Shoots Harvest Policy Function When Number of Shoots is Very Low 
 

 
Notes: Figure presents bamboo shoots harvest policy function for each day for each year as a function of daily shoots price when the number of shoots is very low 

(𝑛𝑠 = 5) and cumulative daily precipitation is low (𝑝𝑟𝑒𝑐𝑖𝑝 = 0), and when parameters are set at their base case values.  For each bamboo growth year, dashed 

vertical lines in red that go from the top to the bottom of the graph denote March 1 (first day of spring shooting) of each year. 
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Figure C.4.  Daily Bamboo Shoots Harvest Policy Function When Risk Averse 
 

 
Notes: Figure presents bamboo shoots harvest policy function for each day for each year as a function of daily shoots price when the number of shoots is a medium 

quantity (𝑛𝑠 = 25) and cumulative daily precipitation is low (𝑝𝑟𝑒𝑐𝑖𝑝 = 0), when farmers are risk averse (with a coefficient of constant relative risk aversion of 

𝜂 = 0.8), and when all other parameters are set at their base case values.  For each bamboo growth year, dashed vertical lines in red that go from the top to the 

bottom of the graph denote March 1 (first day of spring shooting) of each year. 
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Figure C.5.  Perceived Chapman-Richards Growth Function for Bamboo 

Shoots 
  

 
 

Notes: Figure plots bamboo farmers’ perceived Chapman-Richards growth function for winter 

shooting and spring shooting based on the parameter estimates for winter shoots growth rate 
ws  

of 0.272 from our dynamic structural model in Table 2. We use separate Chapman-Richards 

growth functions for winter shooting and spring shooting. The first day of winter shooting is 

September 1.  Winter shooting is from September 1 until February 28.  The number of winter 

shooting days is therefore 181 days.  The spring shooting period starts on March 1 and ends on 

August 31, the last day of the bamboo growth year.  The number of spring shooting days is 184 

days. 
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Table C.1.  Dynamic Structural Model Results: Shoots Decline Probability  
 

Structural Parameter 
Actual 

(Assumed Value) 
All 

  (1) 

Daily shoots decline probability during winter shooting 0.0333 0.000*** 

(0.0000) 

 

   

# Observations  115,290 

# Bamboo plots  35 

Notes: The structural parameter estimate is the parameter estimate from our specification of the structural 

model estimating the shoots decline probability parameter only for the entire sample (“All”).  The actual 

value is the assumed base case parameter value we calibrated based on biological sciences and economic 

data.  Bootstrapped standard errors in parentheses. Significance codes: *** p<0.001, ** p<0.01, * p<0.05 
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Figure C.6.  Optimal vs. Actual Shoots Harvest using structural parameter 

estimate for winter shoots decline probability 

 

 
Notes: Time series plots of the perceived optimal vs. actual number of bamboo shoots harvested on each bamboo plot, 

using the structural parameter estimate for the daily winter shoots decline probability of 0 from Table C.1.  Vertical 

lines in red that go from the top to the bottom of the graph denote September 1 (first day of winter shooting) of each 

year.  Dashed vertical lines in red that go from the top to the bottom of the graph denote March 1 (first day of spring 

shooting) of each year. 
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Table C.2.  Actual vs. Optimal NPV using structural parameter estimate for 

winter shoots decline probability 

 

(a) 

 

NPV during days with data Mean (Yuan) 

Optimal 722 

Actual 127 

Optimal minus Actual 595 

 

 

(b) 

 

Expected NPV over 11-year horizon Mean (Yuan) 

Optimal 12,525 

Actual 9,483 

Optimal minus Actual 3,042 

 
Notes: Table compares actual and optimal net present value (NPV), where net present value (NPV) is 

defined as the present discounted value (PDV) of the entire stream of daily profits, using the structural 

parameter estimate for winter shoots decline probability of 0 from Table C.1.  Panel (a) compares actual 

and optimal NPV during the days with data, where optimal NPV during the days with data is calculated 

using the actual initial states and actual daily prices and precipitation; and the actual NPV during the days 

with data is calculated using the actual daily actions, states, prices, and precipitation.  Panel (b) compares 

optimal expected NPV over the entire 11-year horizon, where optimal expected NPV over the entire 11-

year horizon is given by the value function evaluated at the initial states, and takes an expectation over 

stochastic shoots prices and precipitation; and where actual expected NPV over the entire 11-year horizon 

is the actual NPV during the days with data calculated above plus the discounted continuation value 

evaluated at the actual state at end of data and assumes optimal behavior after the last day of data. 
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Figure C.7.  Optimal vs. Actual Shoots Harvest using structural parameter 

estimate for coefficient of constant relative risk aversion 

 

 
Notes: Time series plots of the perceived optimal vs. actual number of bamboo shoots harvested on each bamboo plot, 

using the structural parameter estimate for the coefficient of constant relative risk aversion of 0.8 from Table 4.  

Vertical lines in red that go from the top to the bottom of the graph denote September 1 (first day of winter shooting) 

of each year.  Dashed vertical lines in red that go from the top to the bottom of the graph denote March 1 (first day of 

spring shooting) of each year. 
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Table C.3.  Actual vs. Optimal Welfare using structural parameter estimate 

for coefficient of constant relative risk aversion 

 

(a) 

 

PDV payoffs during days with data Mean (Yuan) 

Optimal 58 

Actual -273 

Optimal minus Actual 331 

 

 

(b) 

 

Expected PDV payoffs over 11-year horizon Mean (Yuan) 

Optimal 241 

Actual -98 

Optimal minus Actual 339 

 
Notes: Table compares actual and optimal welfare, where welfare is defined as the present discounted value 

(PDV) of the entire stream of daily payoffs, using the structural parameter estimate for coefficient of 

constant relative risk aversion of 0.8 from Table 4.  Panel (a) compares actual and optimal PDV payoffs 

during the days with data, where optimal PDV payoffs during the days with data is calculated using the 

actual initial states and actual daily prices and precipitation; and the actual PDV payoffs during the days 

with data is calculated using the actual daily actions, states, prices, and precipitation.  Panel (b) compares 

optimal expected PDV payoffs over the entire 11-year horizon, where optimal expected PDV payoffs over 

the entire 11-year horizon is given by the value function evaluated at the initial states, and takes an 

expectation over stochastic shoots prices and precipitation; and where actual expected PDV payoffs over 

the entire 11-year horizon is the actual PDV payoffs during the days with data calculated above plus the 

discounted continuation value evaluated at the actual state at end of data and assumes optimal behavior 

after the last day of data. 
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Table C.4.  Dynamic Structural Model Results: Annual Discount Factor  
 

Structural Parameter 
Actual 

(Assumed Value) 
All 

  (1) 

Annual discount factor y  0.9 1.000 *** 

(0.000) 

   

# Observations  115,290 

# Bamboo plots  35 

Notes: The structural parameter estimate is the parameter estimate from our specification of the structural 

model estimating the annual discount factor parameter only for the entire sample (“All”).  The actual value 

is the assumed base case parameter value.  Bootstrapped standard errors in parentheses. Significance codes: 

*** p<0.001, ** p<0.01, * p<0.0 

 


