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Abstract

Sustainable forest management is a complex dynamic problem, and an important issue worldwide.
Forests supply the world’s population with a variety of forest products, including renewable
products such as fruits, nuts, and maple syrup that can be harvested at more frequent intervals
than the trees themselves. When there is both uncertainty and interdependent forest products, the
interaction between these two phenomena leads to a complicated set of trade-offs. We develop
a nested stochastic dynamic bioeconomic model of optimal forest management under uncertainty
for interdependent products that differ in their growth cycles, rates of growth, lengths of growing
periods, and potential harvest frequency. We use our model to assess the optimality of actual
decisions made by forest managers and to develop a dynamic structural econometric model to
understand the beliefs and perceptions that underlie and rationalize their management strategies.
We apply our model to bamboo forests, which generate two interdependent products: bamboo
shoots and bamboo stems. Our methodology is relevant and applicable to the sustainable
management of a variety of renewable resources that generate multiple interdependent products.
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1. Introduction

Sustainable forest management is a complex dynamic problem, and an important issue
worldwide. Forests supply the world’s population with timber as well as renewable non-timber
forest products such as fruits, nuts, and maple syrup that can be harvested at more frequent intervals
than the trees themselves. This paper develops a nested stochastic dynamic bioeconomic model of
optimal forest management under uncertainty for interdependent products.

When forest products are interdependent, the harvest of one product may affect the
availability or growth of another product. For example, after harvesting a tree, one will no longer
be able to grow or harvest products that grow on the tree. Furthermore, the timing of the harvest
of one product may affect how it affects another product. For example, harvesting a tree may have
less of an effect on the tree crops that season if the tree harvest takes place after the tree crops have
already been harvested.

There is an interesting trade-off that arises for forest management under uncertainty. Under
some forms of uncertainty (e.g., uncertainty in prices or precipitation), since harvests are
irreversible, there may be an option value to waiting before harvesting that is akin to the option
value to waiting in most problems of investment under uncertainty (Dixit and Pindyck, 1994).
Thus, all else equal, a forest manager facing these forms of uncertainty may find it optimal to delay
harvests. On the other hand, the opposite happens when there is uncertainty over the survival of a
forest product. Since any death, decay, or damage to the forest product is irreversible, all else
equal, a forest manager facing the possibility that a forest product may die, decay, be damaged, or
be infested by pests may find it optimal to harvest earlier. Thus, a forest manager under uncertainty
faces two different types of irreversibilities — in harvests on the one hand; and in death or damage
on the other — which leads to a tension between delaying versus expediting harvests. This tension
is akin to the countervailing forces that arise in environmental policy adoption, wherein on the one
hand, environmental policy may induce regulatees (e.g., firms, households, individuals, society)
to make irreversible investments in order to comply, and there is an option value to waiting before
making these irreversible investments; while on the other hand, delaying climate policy may lead
to environmental damage that may be at least partially irreversible, which all else equal would
favor expediting climate change policy and adaptation (Dixit and Pindyck, 1994).

When there is both uncertainty and interdependent forest products, the interaction between

these two phenomena leads to a complicated set of trade-offs; and developing a model at this nexus



is the primary innovation of our paper. On the one hand, reasons for a forest manager to harvest a
forest product sooner rather than later may include high prices, low costs, and uncertainty over the
survival of the product. On the other hand, reasons for a forest manager to delay the harvest of a
forest product include allowing the product more time to grow in size, ripeness, or quality;
uncertainty over prices; uncertainty over costs; uncertainty over precipitation; and allowing an
interdependent product to grow.

In this paper, we develop a nested stochastic dynamic bioeconomic model of the optimal
management of forests that generate interdependent products that differ in their growth cycles,
rates of growth, lengths of growing periods, and potential harvest frequency. Our model helps
inform optimal forest harvest decision-making under uncertainty when forest products are
interdependent, and the optimal strategies from the model can be compared with actual harvesting
decisions. We also use our nested stochastic dynamic bioeconomic model to develop a dynamic
structural econometric model to understand the beliefs and perceptions of forest managers that
underlie and rationalize their actual harvesting decisions. We then use our model to assess sources
of any potentially sub-optimal behavior, and suggest possible ways to address them. Our model
has important implications for the sustainable management of forests worldwide, particularly when
the forests produce products that can be harvested at more frequent intervals than the trees
themselves.

We apply our nested stochastic dynamic bioeconomic model to bamboo forests, which
generate two interdependent products: bamboo shoots and bamboo stems. Bamboo is a fast
growing, renewable, versatile, and easy-to-grow resource touted for its environmental and
sustainability benefits (Econation, 2025; Lewis Bamboo, 2025; Guadua Bamboo, 2025). Bamboo
shoots are a traditional food source, and bamboo stems are used as timber for paper making,
flooring, and construction (Fu, 2001). Moso bamboo (Phyllostachys edulis) is the single most
important bamboo species in China, accounting for 74% of China’s bamboo forest area (China
Forestry and Grassland Administration, 2018), as well as the third most important source of timber
in China.

Optimal bamboo forest management is a complex dynamic problem, and involves making
decisions about the timing and quantity of bamboo stem harvests and bamboo shoot harvests. The
harvesting of bamboo stems entails cutting down the bamboo plant, while the harvesting of

bamboo shoots does not. Bamboo shoots grow annually from a bamboo plant’s underground
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rhizomes. Owing to their tender taste and to difficulties in harvesting underground shoots, winter
shoots — which are young bamboo shoots that are just beginning to grow underground during the
winter months — have a higher market price than the older spring shoots that emerge above ground
during the later spring months. Bamboo shoots grow into bamboo stem after the end of spring
shooting (Shi et al., 2013), and these bamboo stems continue to grow each year until age 4-5 years
(Zhang et al., 2014; Zhuang et al., 2015). Bamboo shoots only grow within a year. Bamboo shoots
prices vary day to day and are hard to predict, while the bamboo stem price does not vary much
over the course of a year. Winter shoots are more expensive than spring shoots, and both winter
shoots and spring shoots are more expensive than bamboo stem.

There are several trade-offs involved in determining the optimal bamboo shoots harvesting
strategy that arise from uncertainty and the interdependence of shoots and stem. On the one hand,
factors that may lead bamboo farmers to harvest shoots sooner rather than later include a high
shoots price, low shoots harvest costs, and uncertainty over shoots survival. On the other hand,
bamboo farmers may wish to delay the shoots harvest in order to give shoots more time to grow
in biomass, and also to wait for the possibility of a higher shoots price (since shoots prices are
uncertain). Furthermore, bamboo farmers may forego harvesting some or all of their bamboo
shoots if shoots prices are low, if shoots harvests costs are high, if they wish to have more bamboo
stem the following year (since unharvested shoots grow into bamboo stem at the end of the year),
and/or if there is uncertainty over precipitation (which affects how many shoots will grow the
following year from any stem that resulted from unharvested shoots the previous year).

Likewise, there are several trade-offs involved in determining the optimal bamboo stem
harvesting strategy. On the one hand, reasons to harvest bamboo stem sooner rather than later
include high stem prices and low stem harvest costs. On the other hand, bamboo farmers may
wish to delay harvesting bamboo stem in order to give the stem more time to grow in biomass, if
stem prices are low, if stem harvest costs are high, to allow shoots to grow annually from the
bamboo plant, and/or if they face uncertainty over precipitation (which affects how many shoots
will grow from the stem remaining at the beginning of the year).

To solve for the optimal bamboo stem harvest and bamboo shoot harvest policy, our nested
stochastic dynamic bioeconomic model nests an inner finite-horizon within-year daily dynamic
programming problem within an outer finite-horizon between-year annual dynamic programming

problem. The inner finite-horizon within-year daily dynamic programming problem captures daily



bamboo shoot growth within a year. The outer finite-horizon between-year annual dynamic
programming problem captures annual bamboo stem growth from year to year. We use a
Chapman-Richards growth function as our model for bamboo biomass accumulation. To
incorporate uncertainty, we allow precipitation, prices, and the possibility of bamboo shoots death
to all be stochastic.

We use an iterative approach to developing and refining our model to ensure that it best
reflects reality (Figure 1). We use research and information on Moso bamboo from the biological
sciences, economic data, and interviews we conducted with bamboo forest managers to develop
our model and calibrate the parameters. We compare the optimal strategy given by our model to
data on actual bamboo shoot and bamboo stem harvests we collected from multiple bamboo plots
in Zhejiang province in China. After obtaining initial results from our numerical model, we then
went back to Zhejiang province in China to interview farmers to better understand their beliefs,
perceptions, and decision-making, and used that information to further refine our model and better
reconcile our model with the actual data. Then, to further understand the beliefs and perceptions
of bamboo farmers that underlie and rationalize their bamboo shoot and bamboo stem harvesting
decisions as revealed in the data, and to help us assess and mitigate sources of differences between
actual behavior and the optimal strategy given by our model, we use our nested stochastic dynamic
bioeconomic model to develop a dynamic structural econometric model to estimate different
subsets of the parameters econometrically.

Since there is a large set of parameters in our nested stochastic dynamic bioeconomic
model, we are unable to identify the entire set of parameters simultaneously. Instead, we run
several different specifications of our structural model, each focusing on estimating a different set
of structural parameters, holding the remaining parameters fixed at the values we calibrated for
our numerical model based on research and information on Moso bamboo from the biological
sciences and in economic data. For each specification, the respective structural parameters provide
suggestive evidence for the beliefs and perceptions of bamboo farmers regarding that parameter.
We use any differences between the estimated structural parameters and the respective values we
calibrated based on biological sciences and economic data to help us assess and mitigate sources
of differences between actual behavior and the optimal strategy given by our model.

After applying the iterative strategy above to refine our model to ensure that it best reflects

reality, we find that the actual bamboo stem and bamboo shoot harvests come close to



approximating the optimal harvesting strategy, though some differences remain. Our results have
important implications for bamboo forest management and, to the extent that some of the
differences between actual harvests and optimal bamboo harvests reflect possible sub-optimal
behavior on the part of bamboo forest managers, for ways to improve bamboo forest management
and policy.

More generally, the methodology we develop and employ -- including our novel nested
stochastic dynamic bioeconomic model, our dynamic structural estimation, as well as our iterative
approach to model development and refinement (Figure 1) -- is relevant and applicable to a variety
of production processes that generate multiple interdependent products, including forests that
produce products (such as fruits, nuts, and maple syrup) that grow on trees, agroforestry, and cattle
production. In addition, our iterative approach to model development and refinement (Figure 1)
may serve as a blueprint for integrating other insights from natural sciences into economics.

The balance of our paper proceeds as follows. We discuss the previous literature in Section
2. Section 3 summarizes our biological and economic setting. We describe our numerical dynamic
model of bamboo forest management in Section 4. Section 5 presents the results of our numerical
dynamic model. In Section 6, we compare the dynamically optimal harvesting strategies derived
from our model with our data on actual bamboo shoot and bamboo stem harvests. Section 7

presents our dynamic structural econometric model and its results. We conclude in Section 8.

2. Previous Literature

We build on the seminal models of optimal forest management developed by Faustmann
(1849) for multiple timber harvests and Wicksell ([1901] 1934) for a single timber harvest,
elaborated upon by Samuelson (1976), and subsequently extended in many ways (Kant and
Alavalapati, 2014; Wu et al., 2024), including related extensions to allow for additional non-timber
sources of forest value (Hartman, 1976; Nguyen, 1979; Berck, 1981; Krutilla and Bowes, 1989;
Strang, 1983; Buongiorno, and Gilless, 2003; Yousefpour and Hanewinkel, 2009; Kim and
Langpap, 2015; Lintunen, Rautiainen and Uusivuori, 2022), prices and costs that change over time
(Chang, 1983; McConnell, Daberkow and Hardie, 1983; Newman, Gilbert and Hyde, 1985), risk
of tree death or damage (Reed, 1984; Sims, 2013), and applications to specific tree species (Brodie,
Adams, and Kao, 1978; Calish, Fight and Teeguarden, 1978; Riitters, Brodie and Hann, 1982;

Tyler, Macmillan, and Dutch, 1996); as well as on the literature on deforestation (Démurger, Hou



and Yang, 2009; Souza-Rodrigues, 2019; Oldekop et al., 2019; Balboni et al., 2023; Wang,
Amacher and Xu, 2025). We innovate on this literature by developing a model of optimal forest
management under uncertainty for interdependent forest products; and also by analyzing forest
management in a developing country.

There are multiple available models to measure the growth and productivity of a Moso
bamboo plant. Allometric equations and logistic functions have been used for characterizing
bamboo growth. An allometric model predicts biomass using diameter at breast height. Biological
studies suggest using the Chapman-Richards model (Richards, 1959), which is a flexible growth
model for plants (Liu and Li, 2003), and has been used to predict Moso bamboo height (Yen, 2016).
Bamboo shoot biomass accumulation has been described using a logistic curve (Zhou, 1998). The
literature constructing a growth model for bamboo shoots is sparse, however, and even less is
known about underground winter shoot growth. Thus, as the Chapman-Richards model is a
generalized logistic curve, and since bamboo shoots are young bamboo plants, we adopt and
separately parameterize separate Chapman-Richards models for bamboo stem growth, winter
shoot growth, and spring shoot growth.

The dynamics and interdependence of bamboo stem and bamboo shoots share similar
characteristics to the dynamics and interdependence of cows and calves, and the resulting cattle
cycle (USDA, 2025); our nested stochastic dynamic bioeconomic modeling framework therefore
contributes to the literature on cattle management and cattle cycles (Rosen, Murphy and
Scheinkman, 1994; Hadley, Wolf and Harsh, 2006; Tonsor, 2011). In Wu et al. (2025b), we
develop an analogous notion of a bamboo cycle.

Our paper also contributes to the literature on dynamic structural econometric models,
spawned by the seminal work of Rust (1987), and their applications, including related applications
to natural resources (Timmins, 2002; Huang and Smith, 2014; Aguirregabiria and Luengo, 2016;
Reeling, Verdier and Lupi, 2020; Oliva et al., 2020; Burlig, Preonas and Woerman, 2025; Sears,
Lin Lawell and Walter, 2025; Araujo, Costa, and Sant’Anna, 2020; Sears et al., 2025a; Sears et
al., 2025b), the environment and energy (Rapson, 2014; Blundell, Gowrisankaran and Langer,
2020; Cook and Lin Lawell, 2020; Feger, Pavanini and Radulescu, 2020; Donna, 2021; Gillingham
et al., 2022; Langer and Lemoine, 2022; Li, Liu and Wei, 2022; Weber, 2022; Gerarden, 2023;
Toyama, 2024; Bradt, 2024; Thome and Lin Lawell, 2025; Kheiravar, Lin Lawell and Jaffe, 2025),
agriculture (Scott, 2013; Carroll et al., 2019; Meneses et al., 2025a; Carroll et al., 2025b; Yeh,



Gomez and Lin Lawell, 2025; Meneses et al., 2025b; Carroll et al., 2025a; Sambucci, Lin Lawell
and Lybbert, 2025), health (Iskhakov, 2010; Agarwal et al., 2021), development (Duflo, Hanna
and Ryan, 2012; Rojas Valdés, Lin Lawell and Taylor, 2025), and consumer behavior
(Gowrisankaran and Rysman, 2012; Ching and Osborne, 2020). Misra and Nair (2011) provide
evidence that dynamic structural econometric models can help significantly improve decision-
making and outcomes.

We innovate on the literature on dynamic structural econometric models by nesting our
nested stochastic dynamic bioeconomic model within the maximum likelihood estimation, thereby
yielding an expanded technique we refer to as “nested nested fixed point maximum likelihood
estimation”. We also innovate on the literature on dynamic structural econometric modeling, and
structural econometric modeling more generally, by using research and knowledge from the
biological and plant sciences to inform our modeling and to calibrate the biological parameters in
our model. Owing to intertwined feedback links between biological and economic systems,
bioeconomic modeling is challenging, and there is a considerable need for studies that couple
economic models of decision-making with biophysical models to provide policy-relevant

implications (Kling et al., 2017).

3. Biological and Economic Setting
3.1. The dynamics and interdependence of bamboo stem and bamboo shoots

Moso bamboo (Phyllostachys pubescens) is the single most important bamboo species in
China, accounting for 74% of China’s bamboo forest area (China Forestry and Grassland
Administration, 2018). Moso bamboo distributes mostly in subtropical provinces including Fujian,
Hunan, Zhejiang, and Jiangxi.

Bamboo shoots grow annually from a bamboo plant’s rhizomes, which are underground
bamboo stem structures. Bamboo shoots are buds of new bamboo. A bamboo growth year begins
on September 1, the first day of winter shooting. The number of bamboo shoots at the beginning
of the bamboo growth year is positively correlated with the number of bamboo stem: the more
bamboo stem, the more rhizomes there are underground, and the more bamboo shoots that can
grow (Li et al., 2016; Zhang and Ding, 1997). The number of bamboo shoots is also positively
correlated with precipitation in July and August of the previous bamboo growth year, when

bamboo shoots are being formed (Zhang and Ding, 1997).
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As long as the shoots are underground and have not emerged above ground, they are called
winter shoots. Winter shoots remain dormant during the coldest winter days in January and
February, and emerge above ground as spring shoots in March when the temperature rises (Su,
2012). Winter shoots can be harvested and sold on the market for a high winter shoots price until
they emerge above ground and start to be called spring shoots. Spring shoots continue to grow
very fast until the end of the bamboo growth year (Song et al., 2016).

Bamboo shoots either degenerate, are harvested, or are left in the ground and grow into a
newly grown bamboo stem (personal communication, bamboo specialist at Zhejiang Provincial
Key Laboratory of Bamboo of Zhejiang Provincial Academy of Forestry, August 2018). More
than half of the shoots will degenerate and die naturally before they grow into bamboo stem (Jiang,
2007).

Bamboo shoots grow into bamboo stem after the end of spring shooting (Shi et al., 2013).
The number of newly grown bamboo stem is the number of surviving bamboo shoots minus
number of shoots harvested. Moso bamboo stems reach their maximum biomass at age 4-5 years
(Zhang et al., 2014; Zhuang et al., 2015), do not increase significantly in biomass after 4.62 years
(Zhuang et al., 2015), and mature at age 5-6 years (Yen and Lee, 2011).

3.2. Bamboo market

The bamboo market in China is arguably characterized by perfect competition. The
cultivation of bamboo forests is done by individual bamboo farmers on their own land (personal
communication, Mr. Jianping Pan, manager of Fumin Bamboo Shoot Specialized Cooperative,
August 2018), and the number of bamboo farmers in China is quite high. There were 7.14 million
bamboo farmers in 2010 (International Bamboo and Rattan Organisation, 2012). In Anji County
of Zhejiang province alone, there were approximately 110,000 farmers growing bamboo and
another 11,000 people working in the bamboo-processing industry in the county in 1999 (Pérez et
al., 1999). Bamboo farmers in Zhejiang province are small peasants who own a relatively small
amount of land per family. The average land area managed by a family in Anji County is 21.2 mu,
of which 14.9 mu (70%) is allocated to bamboo plantations (Pérez et al., 1999). Bamboo shoots
produced in Zhejiang, Hunan, Fujian, Jiangxi, and Sichuan provinces all compete for the same

consumers (People.cn, 2014).



Bamboo shoots prices vary day to day and are hard to predict, while the bamboo stem price
does not vary much over the course of a year. Bamboo shoot prices also differ for spring bamboo
shoots and winter bamboo shoots. Due to difficulties of locating and harvesting underground
winter bamboo shoots, as well as popular preference over more tender taste, winter bamboo shoots
have higher market price than spring bamboo shoots. Both winter shoots and spring shoots are
more expensive than bamboo stem (Wu et al., 2025a).

The bamboo shoot and bamboo stem harvest cost is determined by labor costs (Wu and
Cao, 2016) as well as land specific characteristics such as the slope of forest land (Wu and Cao,
2016; Dong et al., 2015). Due to decreasing profits from bamboo forests, younger workers in rural
areas have left their hometown and started to find jobs in large cities such as Hangzhou and
Shanghai, leaving less labor to manage bamboo forests in rural areas of Zhejiang province; this

insufficient labor supply has resulted in increasing labor costs in recent years (Jiang, 2020).

3.3. Data on harvests

We collect, translate, and transcribe individual hard-copy handwritten Chinese records on
actual bamboo shoot harvest and bamboo stem harvest decisions on 20 meter by 20 meter bamboo
plots in Shanchuan Township and Sian Township in Zhejiang province in China. Our data set
includes 35 bamboo plots over 2 bamboo growth years from March 1, 2017 to August 31, 2018:
20 bamboo plots in Sian Township and 15 bamboo plots in Shanchuan Township. We describe
and discuss our data in more detail in Appendix B, and present plots of the data on actual harvests
in Section 6.

For additional background information regarding China’s forests, bamboo forests, and

Moso bamboo, see Wu et al. (2025a).

4. Dynamic Model of Moso Bamboo Management

We solve for the optimal bamboo stem and bamboo shoot harvest policy using a numerical
dynamic model that nests an inner finite-horizon within-year daily dynamic programming problem
within an outer finite-horizon between-year annual dynamic programming problem. The inner
finite-horizon within-year daily dynamic programming problem captures daily bamboo shoot
growth within a year. Sources of daily variation include the daily shoots biomass, the daily shoots

price, the daily number of shoots, daily shoots death, and daily precipitation. The outer finite-



horizon between-year annual dynamic programming problem captures annual bamboo stem
growth from year to year.’

We model the harvesting of bamboo that was all planted at the same time (and therefore of
the same age class). The daily control (action) variables are the bamboo shoots harvest ag (in units
of number of bamboo shoots) and bamboo stem harvest a;, (in units of number of bamboo stem).
The daily state variables include the number of bamboo stem ny; the number of bamboo shoots
ng; our precipitation state precip, which is a dummy for the cumulative daily precipitation over
July and August of that bamboo growth year exceeding a high precipitation threshold that day; and
the shoots price ps. The time variables are year y and day-in-year d.

To incorporate uncertainty, we allow precipitation, bamboo shoot prices, and the
possibility of bamboo shoots death to all be stochastic. For both precipitation and prices, we use
the empirical distribution of precipitation and prices in the data. In particular, we draw the daily
winter shoots price from the empirical distribution of daily winter shoots price, we draw the daily
spring price from the empirical distribution of daily spring shoots price, and we draw the daily
high precipitation dummy precip from the daily empirical probability of high precipitation (precip
= 1) for each township. For the possibility of bamboo shoots death, we calibrate the probability
of death using data and information from previous studies of bamboo growth in the scientific,
biological, and plant science literature.*

We use a separate Chapman-Richards model (Richards, 1959) for the growth of each of
the three types j of bamboo products: winter shoots s,,,, spring shoots sg, and bamboo stem b. The

Chapman-Richards model is given by:

Y, =4;-(1- Qje‘“jfj)l/(l_”f),
where Y; is the total biomass for bamboo product; in a single bamboo plant; t; is the age of bamboo
(in days for winter and spring shoots, and in years for bamboo stem); and 4;, a; , Q;, v; are

parameters whose interpretation and values for each of the bamboo product types j are discussed
in more detail in Appendix A. Figures A.1 and A.2 in Appendix A plot our calibrated Chapman-

Richards growth functions for bamboo shoots and bamboo stem, respectively.

3 As explained in more detail in Appendix B, we set the finite horizon for the outer between-year annual dynamic
programming problem to 11 years, well past the age 4-5 years at which Moso bamboo stems reach their maximum
biomass (Zhang et al., 2014; Zhuang et al., 2015).

4 We describe the empirical distributions and probabilities we use for our stochastic variables in more detail in
Appendix B.
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The per-period profit function is:
n(s,a,d,y) =nu(s,a,d,y) +ny(s,a,d,y),
where 1, (s, a,d, y) is the profit from harvesting bamboo stem and 74(s, a, d,y) is profit from
harvesting bamboo shoot. Given the large number of bamboo farmers and the other features of
the bamboo market described in Section 3 and further elaborated on in Wu et al. (2025a), we
assume that the bamboo market is perfectly competitive and that bamboo farmers are therefore
price takers.
The profit m, (s, a, d, y) from bamboo stem harvest is given by:
my(s,a,d,y) = (pp — Cp)TaLYp,

where p,, is the bamboo stem price, ¢, is the unit cost of bamboo stem harvest, and 7 is the
conversion coefficient to convert bamboo stem price and bamboo stem quantity a,Y), to
comparable units.’

The profit n4(s, a, d, y) from bamboo shoot harvest is given by:

15(s,a,d,y) = (ps — c5)TasYs,

where p, is the bamboo shoots price, ¢, is the unit cost of bamboo shoot harvest, and 7 is a
conversion coefficient to convert bamboo shoots price and bamboo shoots quantity asY; to
comparable units. We allow the bamboo shoots price p, and the bamboo shoots harvest cost ¢, to
differ for winter shoots and spring shoots. Since winter shoots price and spring shoots price tend
to vary a lot within and across seasons, we also allow the shoots price to be stochastic. In
particular, we draw the daily winter shoots price from the empirical distribution of daily winter
shoots price, and we draw the daily spring price from the empirical distribution of daily spring
shoots price.

In our base case specification, we assume that the bamboo farmer is risk neutral, and
therefore that the bamboo farmer’s per-period payoff (or utility) U(+) is linear in per-period profit
n(s,a,d,y):

U(n(s, a,d, y)) =n(s,a,d,y).
Since the bamboo farmer faces multiple sources of uncertainty (precipitation, weather, and

shoots death), in an alternative specification we allow the bamboo farmer to be risk averse, and

5 The Chapman-Richard’s model predicts biomass ¥, and Y, in units of kilograms of dry weight. In contrast, our
shoots and stem price are in units of yuan per kilogram of actual weight, which contains both biomass and water. We
use a conversion coefficient T to convert biomass in dry weight into its actual weight (which contains both biomass
and water).
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use a constant relative risk aversion (CRRA) functional form for the farmer’s per-period payoff
(or utility) U(+) as a function of per-period profit 7(s, a, d, y):

n(s,ady)™"
1-n

B

U(n(s, a,d, y)) =

where 7 is the coefficient of constant relative risk aversion. When n = 0, the bamboo farmer is
risk neutral, and the per-period payoff corresponds to the linear per-period payoff function from
our base case specification.

The bamboo forest manager chooses the bamboo stem harvest strategy and the bamboo
shoot harvest strategy to maximize the present discounted value (PDV) of the entire stream of per-
period payoffs. The value function, which is the present discounted value of the entire stream of
per-period payoffs when the bamboo shoot harvest and bamboo stem harvest decisions are chosen

optimally, is given by the following Bellman equation:
V(s,d,y) = max )U(n(s, a,d,y))+ BEV(s',d,y)ls ady]
a=(ap,as

Since we nest an inner finite-horizon within-year daily dynamic programming problem
within an outer finite-horizon between-year annual dynamic programming problem, we use two

different discount factors f: a daily discount factor B; and an annual discount factor §,. We set

the daily discount factor to be ; = ,Byl/ 365 which yields an annual discount factor of §, over
365 days.

For the transition density for number of bamboo shoots within a year: during each year y,
the number of bamboo shoots will change via the bamboo shoots harvest decision ag. For the
transition density for number of bamboo plants, the number of bamboo stems n;, changes via the
bamboo stem harvest decision a;. Bamboo stem harvest can occur any day of year. In addition,
since bamboo shoots grow into bamboo stem after the end of spring shooting, the number of
bamboo stems n;, also increases by the number of bamboo shoots that remain at the end of the last
day of spring shooting.

The transition density for number of bamboo shoots between years is more complicated.
The number of bamboo shoots at the beginning of the year depends on the number of remaining
bamboo stem at the beginning of the year (remaining after bamboo stem are harvested the previous
year): the more bamboo stem, the more rhizomes there are underground, and the more bamboo
shoots that can grow (Li et al., 2016; Zhang and Ding, 1997). In addition, to capture the positive

correlation of the number of bamboo shoots with precipitation during the months of July and
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August of the previous bamboo growth year (Zhang and Ding, 1997), we allow rain to be stochastic
and include a state variable, precip, which is a dummy for the cumulative daily precipitation over
July and August of that bamboo growth year exceeding a high precipitation threshold that day.
For each township, for each day in July and August, we take a draw from the daily empirical
probability of high precipitation (precip = 1) for that township.® The number of bamboo shoots
ng is bounded below by 0 and bounded above by an upper bound 75 that reflects in part the
carrying capacity for bamboo plants.

Since this is a finite horizon problem, the value functions and policy functions are functions
of both measures of time, year y and day-in-year d. The terminal condition for the outer annual
backwards iteration is that there is no continuation value after the last day of the last year. The
terminal condition for the inner day-in-year backwards iteration is that, except in the last year,
when there is no continuation value after the last day of the last year, the continuation in the last
day of the year is the expected value of the value function on the first day of the next year.

We describe our base case parameter values in Appendix B. We run several specifications
of our numerical model that vary the values of the parameters. For each specification, we solve for
the value function, the bamboo shoot harvest policy function, and the bamboo stem harvest policy
function, each as a function of the state variables (number of bamboo stem n;, number of bamboo
shoots ng, high precipitation dummy precip, and shoots price pg). Since our dynamic model nests
an inner finite-horizon within-year daily dynamic programming problem within an outer finite-
horizon between-year annual dynamic programming problem, there is a separate value function

and policy function (as functions of state variables) for each day of each year.

5. Results of Numerical Model

Our numerical model yields several notable results. For the optimal bamboo stem harvest,
we find that it is generally optimal to wait to harvest any bamboo stem until the fourth bamboo
growth year or later, after their growth has begun to slow down, and to harvest bamboo stem at the
beginning of the year (Figures C.1 and C.2 in Appendix C). The intuition is as follows. Since
bamboo stems continue to grow each year until age 4-5 years, and bamboo stem growth begins to

slow down around the end of the fourth year and beginning of the fifth year (Zhang et al., 2014;

® We describe how we model stochastic rain and estimate the daily probability of high precipitation for each township
in more detail in Appendix B.
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Zhuang et al., 2015), and since the number of bamboo shoots at the beginning of each year depends
on the number of bamboo stem remaining at the beginning of each year (Li et al., 2016; Zhang and
Ding, 1997), it is optimal to wait until the fourth year or later to harvest any bamboo stem in order
to allow bamboo stem biomass to accumulate, and to make bamboo shoots harvest possible for
multiple years. Moreover, after bamboo stem growth has slowed down, any increase in bamboo
stem biomass from delaying bamboo stem harvest past the beginning of the year will be small
since the number of bamboo shoots at the beginning of that year was already determined by the
number of bamboo stem remaining at the beginning of that year; it is therefore optimal to harvest
bamboo stem at the beginning of the bamboo growth year it is being harvested.

For the optimal bamboo shoot harvest (Figure 2), we find that it is generally optimal to
harvest bamboo shoots each year that there are bamboo shoots, starting from the second bamboo
growth year. The intuition is as follows. The number of bamboo shoots at the beginning of each
year depends on the number of bamboo stem remaining at the beginning of each year. In the first
year, when all the bamboo is in the form of bamboo shoots, it is generally optimal to forego
harvests so that the bamboo shoots can grow into bamboo stem at the end of the first year, which
would then result in there being both bamboo shoots and bamboo stem at the beginning of the
second year. It is then optimal to harvest the bamboo shoots each year for which there are bamboo
shoots, since starting from the second bamboo growth year onwards the number of bamboo shoots
at the beginning of each year is not affected by the bamboo shoot harvest in the previous year, but
depends instead on number of bamboo stem remaining at the beginning of each year.

In terms of within-year timing for any winter shoots harvest, we find that even if there is a
possibility of shoots death, it is generally optimal to wait at least until end of October and when
winter shoots price is high to do any winter shoots harvest. This is because over 50% of winter
shoots growth takes place during November (Wei et al., 2017). This result is consistent with the
traditional bamboo management guidance to avoid harvesting too many winter shoots before
spring shoots emerge, in order to foster a new bamboo forest (Forestry Department of Hunan
Province, 2008).

If the number of shoots is very low, however, the winter shoots price is high, and there is
a possibility of shoots death, it may be optimal to harvest some winter shoots earlier, including in
the first bamboo growth year (Figure C.3 in Appendix C). The intuition is that with very few

winter shoots and the possibility of shoots death, it may be worthwhile to harvest earlier if the
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winter shoots price is high even though the shoots have less biomass because the farmer faces a
non-trivial possibility that all of the very few shoots may die before they are harvested.

Likewise, if the bamboo farmer is risk averse and there is a possibility of shoots death, it
may be optimal to harvest some winter shoots earlier even when the winter shoots price is low
(Figure C.4 in Appendix C). With the possibility of shoots death, it may be worthwhile to harvest
earlier even though the shoots have less biomass for a risk averse farmer since the expected
marginal utility from waiting for the shoots to accumulate more biomass may be lower than the
opportunity cost from any foregone sure profits from harvesting winter shoots earlier before they
die.

In terms of within-year timing for any spring shoots harvest, we find that, unless the spring
shoots price is high, it is optimal to wait until last days of spring shooting for which spring shoots
are marketable to do any spring shoots harvest. The intuition is that the more time the spring
shoots are given to grow during spring shooting, the more biomass there is.

Figure 3 presents a sample set of optimal trajectories for bamboo stem harvest, shoots
harvest, number of bamboo stem, and number of shoots. Our solution for optimal bamboo forest
management might also characterize the optimal forest management policy for other forests that
produce products (such as fruits, nuts, sap, and maple syrup) that grow on trees that are renewable

and can be harvested at more frequent intervals than the trees themselves.

6. Comparing Optimal Bamboo Management with Actual Harvest Decisions

We compare the optimal bamboo shoot and bamboo stem harvest policy as given by our
numerical dynamic model with our data on actual bamboo shoot and bamboo stem harvests on 35
bamboo plots in Zhejiang province.

Figure 4 presents time series plots of the optimal vs. actual number of bamboo stem
harvested by initial age class on each bamboo plot. Actual bamboo stem harvests tend to be close
to what our model stipulates to be optimal: bamboo stem harvests do not take place until the fourth
bamboo growth year or later. Nevertheless, given the relatively low bamboo stem prices during
the time period of our data, farmers might do even better by waiting even more years before
harvesting bamboo stem.

Figure 5 presents time series plots of the optimal vs. actual number of bamboo shoots

harvested, as imputed above, on each bamboo plot. Actual shoots harvests also tend to be close to
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what our model deems to be optimal: bamboo shoots harvest take place when shoots prices are
high; and if the number of shoots is very low and there is a possibility of winter shoots death,
winter shoots are harvested earlier when the shoots price is high, including in the first bamboo
growth year. Nevertheless, the frequency and/or quantity of actual winter shoots harvests might
be higher than optimal.

Previous anecdotal evidence suggests that winter shoots have sometimes been over-
harvested for high profit, leaving too few shoots for future bamboo forest development (Wu et al.,
2025a). We find that, for the bamboo plots in our data set, even when there are few shoots, and
even with the possibility of winter shoots death and high winter shoots prices, the frequency and/or
quantity of winter shoots harvest might be higher than optimal.

Thus, results of our comparison between the optimal bamboo stem harvest and bamboo
shoot harvest given by our dynamic model with the data on actual bamboo stem harvests and
bamboo shoots harvest is that actual bamboo stem and bamboo shoot harvests come close to
approximating the optimal harvesting strategy, but have some features that differ from what our
model suggests to be optimal.

We also compare actual and optimal net present value (NPV), where net present value
(NPV) is defined as the present discounted value (PDV) of the entire stream of daily profits. First,
we calculate and compare actual and optimal NPV during the days with data, where optimal NPV
during the days with data is calculated using the actual initial states and actual daily prices and
precipitation; and the actual NPV during the days with data is calculated using the actual daily
actions, states, prices, and precipitation. Second, we calculate and compare optimal expected NPV
over the entire 11-year horizon, where optimal expected NPV over the entire 11-year horizon is
given by the value function evaluated at the initial states, and takes an expectation over stochastic
shoots prices and precipitation; and where actual expected NPV over the entire 11-year horizon is
the actual NPV during the days with data calculated above plus the discounted continuation value
evaluated at the actual state at end of data and assumes optimal behavior after the last day of data.

As seen in the NPV results in Table 1, the optimal strategy yields a higher NPV than actual
harvests do, both during the days with data, and also in expectation over the entire 11-year horizon.
The optimal strategy does even better than actual harvests in expectation over the 11-year horizon,

since the optimal strategy may involve forgoing some profits in the short run in order to benefit
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from higher and more sustained profits in the long run, and thus we see even more benefits of the

optimal strategy in expectation over 11 years than we see in just the 2 years of our data.

7. Dynamic Structural Econometric Model

To understand the beliefs and perceptions of bamboo farmers that underlie and rationalize
their bamboo shoot and bamboo stem harvesting decisions as revealed in the data, and to help us
assess and mitigate sources of differences between actual behavior and the optimal strategy given
by our model, we use our nested stochastic dynamic bioeconomic model to develop a dynamic
structural econometric model. We innovate upon the nested fixed point maximum likelihood
estimation developed by Rust (1987, 1988) by nesting our nested stochastic dynamic bioeconomic
model within the maximum likelihood estimation, so that the nested fixed point calculation itself
also involves a nest, thereby yielding an expanded technique we refer to as “nested nested fixed
point maximum likelihood estimation”.

Since there is a large set of parameters in our nested stochastic dynamic bioeconomic
model, we are unable to identify the entire set of parameters simultaneously. Instead, we run
several different specifications of our structural model, each focusing on estimating a different set
of structural parameters 6, holding the remaining parameters fixed at the values we calibrated for
our numerical model based on research and information on Moso bamboo from the biological
sciences and in economic data. For each specification, the respective structural parameters 6
provide suggestive evidence for the beliefs and perceptions of bamboo farmers regarding that
parameter 8. We use any differences between the estimated structural parameters 6 and the
respective values we calibrated based on biological sciences and economic data to help us assess
and mitigate sources of differences between actual behavior and the optimal strategy given by our

model.

7.1. Nested nested fixed point maximum likelihood estimation

To account for unobservable state variables that bamboo farmers observe (but we do not
observe) when they make their spraying and harvesting decisions, we next expand the per-period
payoff to each choice a to include both a deterministic component Uy(7(s,a,d,y);8) and a
stochastic component e(a). The deterministic component Uy(7t(s, a, d,y); 6) of the per-period

payoff in our structural model is equal to the bamboo farmer’s per-period payoff U (T[(s, ad, y))
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from the numerical model; as before, we assume the bamboo farmer is risk neutral in the base case
and allow for risk aversion in an alternative specification. The stochastic component to the per-
period payoff to each action is an unobserved shock (a) associated with that action choice a that
is assumed to be distributed i.i.d. extreme value across days d, years ¢, farmers 7, and actions a.
The value function incorporating these unobserved shocks €(a) is now given by:

V(s,d,y;0) = a=r81%)é )Uo(n(s, a,d,y);0) +e(a) + BE[V(s',d',y";0)]|s,a,d,y].

The conditional choice probabilities Pr(a|s, d, y; 8)are given by:

exp(Up (n(s,a,d,y):0)+BVE(s,a,d,y;6))
Y. 5 exp(Uo (n(s,a,d,):0)+BV < (s,d,d,y;0)) °

Pr(a|s,d,y; 0) =

where V¢(s, a, d, y; 0) is the continuation value, which is the expected value of the value function
next period given the states and actions this period:
Ve(s,a,d,y;0) =E[V(s',d,y';0)|s,ad,v].

We use a nested fixed point maximum likelihood estimation to find the parameters 6 that
maximize the log-likelihood function L(8), which is the following function of the conditional
choice probabilities Pr(a|s,d, y; 0):

L(0) = X Xa Xy InPr(a;gy|siay 4, y; 6).

Building on the nested fixed point maximum likelihood estimation technique developed by
Rust (1987, 1988), our maximum likelihood estimation methodology nests an inner finite-horizon
within-year daily dynamic programming problem within an outer finite-horizon between-year
annual dynamic programming problem to solve for the continuation values and conditional choice
probabilities for each day d in each year y at each evaluation of the likelihood function. Thus, the
nested fixed point calculation itself involves a nest -- our nested stochastic dynamic bioeconomic
model, an expanded technique we thereby refer to as “nested nested fixed point maximum
likelihood estimation™.

In one specification, the structural parameter 6 we estimate is the growth rate ag = for
winter shoots. In a second specification, the structural parameters 6 we estimate are parameters

in the shoots harvesting cost, namely the winter shoots harvest cost parameter ¢, the spring
shoots harvest cost parameter ¢, and the shoots harvest cost convex cost parameter ¢, . In a third

specification, the structural parameter 8 we estimate is the daily shoots decline probability during
winter shooting. In a fourth specification, we allow for risk aversion and the structural parameter

6 we estimate is the coefficient of constant relative risk aversion 7.
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Identification of the parameters 6 comes from the differences between per-period payoffs
across different action choices, which in finite-horizon dynamic discrete choice models are
identified when the discount factor 3, the distribution of the choice-specific shocks (a), and the
final period continuation value are fixed (Rust, 1994; Magnac and Thesmar, 2002; Abbring, 2010).
In particular, because the discount factor § and the distribution of the choice-specific shocks (a)
are fixed and the final period continuation value is zero, the parameters in our model are identified
because each term in the deterministic component my(s,a,d,y;8) of the per-period payoff
depends on the action a being taken in day d in year y, and therefore varies based on the action
taken; as a consequence, the parameters do not cancel out in the differences between per-period
payoffs across different action choices and are therefore identified. For example, the winter shoots
harvest cost parameter cg, is identified in the difference between the per-period payoff from
choosing to harvest winter shoots and the per-period payoff from any daily action choice a that
does not involve harvesting winter shoots.

In a fifth specification, the structural parameter 8 we estimate is the annual discount factor
By. In general, the discount factor f is not identified in dynamic structural econometric models.
In order to identify the discount factor f§ in a dynamic structural econometric model, one needs a
variable that affects the transition density of state variables that affect per-period profits, but does
not itself directly affect the per-period profits except through its effect on the transition density
(Fang and Wang, 2015). In our case, our variable for precipitation over the months of July and
August does not directly affect daily profits except through its effect on the number of bamboo
shoots at the beginning of the subsequent bamboo growth year. Thus, in our case, we can
potentially identify the discount factor f,,.

Standard errors are formed by a non-parametric bootstrap. Bamboo plots are randomly
drawn from the data set with replacement to generate 100 independent panels each with the same
number of bamboo plots as in the original data set. The structural model is run on each of the new
panels. The standard errors are then formed by taking the standard deviation of the parameter

estimates from each of the panels.

7.2. Results
Table 2 presents the results of the specification of the dynamic structural model in which

the structural parameter 6 we estimate is the growth rate ag  for winter shoots. Our structural
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parameter estimate for the winter shoots growth rate a;, of 0.272 for the pooled sample is larger
than the winter shoots growth rate a; , we calibrated based on biological research and information
on winter shoots to be 0.016. Thus, the harvesting behavior of the bamboo farmers in our data can
be rationalized by high perceived growth rate for winter shoots. In other words, bamboo farmers
are acting as if they perceive or believe the growth rate for winter shoots to be higher than may
actually be the case based on data and information on winter shoots from plant scientists. Figure
C.5 in Appendix C plots the bamboo farmers’ perceived Chapman-Richards growth function for
winter shooting and spring shooting based on our structural parameter estimates for the winter
shoots growth rate. Thus, the high quantity and frequency of winter shoots harvests we see in the
data can be rationalized by perceived growth rate for winter shoots that is higher than may actually
be the case based on data and information on winter shoots from plant scientists.

Table 3 presents the results of the specification of the dynamic structural model in which
the structural parameters 6 we estimate are parameters in the shoots harvesting cost, namely the

winter shoots harvest cost parameter ¢, , the spring shoots harvest cost parameter ¢, , and the

shoots harvest cost convex cost parameter cs,. We find that the bamboo farmers in our data are
acting as if they perceive or believe spring shoots harvest costs to be lower higher than the actual
monetary cost, and that they perceive or believe high convex costs to shoots harvest. The high
perceived convex costs to shoots harvest may explain why we see a high frequency of winter
shoots harvests in the data.

Table C.1 in Appendix C presents the results of the specification of the dynamic structural
model in which the structural parameter 8 we estimate is the daily shoots decline probability
during winter shooting. We find that the harvesting behavior of the bamboo farmers in our data
can be rationalized by a daily winter shoots decline probability of zero. We rerun our numerical
nested stochastic dynamic bioeconomic model using a daily winter shoots decline probability of
zero. Figure C.6 in Appendix C compares the resulting optimal bamboo shoots harvests with the
actual data (optimal bamboo stem harvests remain unchanged from before, and the respective
figure is identical to Figure 4), and Table C.2 in Appendix C compares resulting optimal NPV with
actual NPV. Results suggest that using the perceived daily winter shoots decline probability of
zero estimated from the structural model does not substantially improve the fit of the model; while
the optimal strategy may better match spring shoots harvest during the second year of our data set

(see, for example, initial age class 0 in the second year of data following the second dashed red
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vertical line) when using the structural parameter estimate (Figure C.6), the calibrated parameter
better explains the actual winter shoots harvest (Figure 5). In addition, the difference between
optimal and actual NPV is higher under the structural parameter estimate (Table C.2) than under
the calibrated parameter (Table 1). Moreover, the most cited reason among bamboo farmers we
interviewed for harvesting bamboo shoots earlier during winter shooting is the probability that
shoots might not survive (Wu et al., 2025a). For these reasons, it is unlikely that the discrepancy
between actual and optimal decisions is due to bamboo farmers misperceiving the daily winter
shoots decline probability to be zero.

Table 4 presents the results of the specification of the dynamic structural model in which
we allow for risk aversion and the structural parameter 6 we estimate is the coefficient of constant
relative risk aversion 7. We find that the harvesting behavior of the bamboo farmers in our data
for the pooled sample and for Sian Township can be rationalized by a coefficient of constant
relative risk aversion of n = 0.8. In contrast, bamboo farmers in Shanchuan Township appear to
be risk neutral, as the coefficient of constant relative risk aversion 7 for the subsample of farmers
in Shanchuan Township is statistically insignificant. We rerun our numerical nested stochastic
dynamic bioeconomic model using a coefficient of constant relative risk aversion of n = 0.8.
Figure C.7 in Appendix C compares the resulting optimal bamboo shoots harvests with the actual
data (optimal bamboo stem harvests remain unchanged from before, and the respective figure is
identical to Figure 4), and Table C.3 in Appendix C compares resulting optimal welfare with actual
welfare, where welfare is defined as the present discounted value (PDV) of the entire stream of
daily payoffs. When farmers are risk averse (with n = 0.8), the optimal winter shoots harvests
are higher in frequency and quantity, which may better match the actual winter shoots harvests
(Figure C.7), though risk neutrality (Figure 5) better matches the actual spring shoots harvest
during the second year of our data set (see, for example, initial age class 3 in the second year of
data following the second dashed red vertical line).

Table C.4 in Appendix C presents the results of the specification of the dynamic structural

model in which the structural parameter 6 we estimate is the annual discount factor ,,. Results
show the discount factor f3,, is close to 1, so the bamboo farmers in our data set do care about the

future, which rules out myopic behavior as a possible source of discrepancy between actual and

optimal decisions.
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7.3. Discussion and policy implications

Results of our dynamic structural econometric model suggest three possible sources of
differences between actual and optimal harvests: a higher perceived winter shoots growth rate,
more convex costs to shoots harvest, and risk aversion. Each of these three channels would explain
why actual winter shoots harvests in the data are higher and more frequent than our model suggests
is optimal.

Since the winter shoots growth rate we calibrate is based on research and information on
Moso bamboo from biological science, the parameter value we use likely reflects actual winter
shoots growth. Thus, if bamboo farmers perceive the winter shoots growth rate to be higher than
the what it actually is, this is a misperception that leads to a loss in farmer NPV (as seen in Table
1) and can be addressed via programs and policies that better inform farmers about winter shoot
growth.

As for the high convex costs to harvesting shoots, since we have less information on costs
and since costs can vary by farmer, we therefore feel less confident that the convexity parameter
we use for our model reflects the true convexity of costs for all bamboo farmers; it is therefore
very possible that the structural estimate for the convexity of shoots harvesting costs may better
reflect the convexity of all shoots harvesting costs, monetary and otherwise, that farmers face.
Nevertheless, as the high convexity of costs leads to a loss in farmer NPV, there may be scope for
improving bamboo farmer profits and sustainability through initiatives that address the reason
costs are so convex. For example, if the convex costs arise due to labor shortages or labor
constrains that preclude a farmer from harvesting a large quantity of shoots at one time, then
policies that alleviate the labor market frictions might be beneficial.

As for risk aversion, results of our structural model suggest that bamboo farmers in Sian
Township are risk averse while the bamboo farmers in Shanchuan Township are not. As risk
aversion leads to lower profits, there may be scope for improving bamboo farmer profits and
sustainability through initiatives, such as crop insurance, that help farmers reduce, share, or

manage the risk they face.

8. Conclusion

When there is both uncertainty and interdependent forest products, the interaction between

these two phenomena leads to a complicated set of trade-offs; developing a model at this nexus is
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the primary innovation of our paper. In particular, we develop a nested stochastic dynamic
bioeconomic model of optimal forest management under uncertainty for interdependent products
that differ in their growth cycles, rates of growth, lengths of growing periods, and potential harvest
frequency. Our model enables us to assess the optimality of actual decisions made by forest
managers and to develop a dynamic structural econometric model to understand the beliefs and
perceptions that underlie and rationalize their management strategies. As depicted in Figure 1, we
use an iterative approach to developing and refining our model to ensure that it best reflects reality.

We apply our model to bamboo forests, which generate two interdependent products:
bamboo shoots and bamboo stems. We compare the optimal bamboo stem harvest and bamboo
shoot harvest policy with actual data on bamboo shoot and bamboo stem harvests in China. We
find that the actual bamboo stem and bamboo shoot harvests come close to approximating the
optimal harvesting strategy, though some differences remain. First, given relatively low bamboo
stem prices, farmers might do even better by waiting even more years before harvesting bamboo
stem. Second, for the bamboo plots in our data set, even when there are few shoots, and even with
the possibility of winter shoots death and high winter shoots prices, the frequency and/or quantity
of winter shoots harvest might be higher than optimal, and contrary to the traditional bamboo
management guidance to avoid harvesting too many winter shoots before spring shoots emerge, in
order to foster a new bamboo forest (Forestry Department of Hunan Province, 2008). The results
are consistent with anecdotal evidence that winter shoots have sometimes been over-harvested for
high profit, leaving too few shoots for future bamboo forest development.

To further understand the beliefs and perceptions of bamboo farmers that underlie and
rationalize their bamboo shoot and bamboo stem harvesting decisions as revealed in the data, and
to help us assess and mitigate sources of differences between actual behavior and the optimal
strategy given by our model, we use our nested stochastic dynamic bioeconomic model to develop
a dynamic structural econometric model to estimate different subsets of the parameters
econometrically. Results of our dynamic structural econometric model suggest three possible
sources of differences between actual and optimal harvests: a higher perceived winter shoots
growth rate, more convex costs to shoots harvest, and risk aversion. To the extent that the
overharvesting of winter shoots and its resulting loss in farmer NPV is due to farmers
misperceiving the winter shoots growth rate, this inefficiency can be addressed via programs and

policies that better inform farmers about winter shoot growth. Similarly, if farmers are facing
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highly convex costs due to labor shortages or labor constraints that preclude them from harvesting
a large quantity of shoots at one time, then policies that alleviate the labor market frictions might
be beneficial. Likewise, there may be scope for improving bamboo farmer profits and
sustainability through initiatives, such as crop insurance, that may make bamboo farmers less risk
averse.

There are several important features of bamboo forest management that are at least partially
captured by our model. These include winter shoots growth, variation in bamboo shoot price and
bamboo stem price over time; capacity and/or labor constraints on the amount that is feasible to
harvest in one day; the possibility of shoots death; risk aversion; and parameter values that differ
from the ones we use in the model. The remaining differences between actual harvests and optimal
bamboo harvests may reflect features that we do not capture in our model, including liquidity
constraints and/or alternative crops or uses of the land. If some of the differences between actual
harvests and optimal harvests arise because of economic constraints such as liquidity constraints,
it is possible that some of these constraints can be ameliorated by well-designed institutions or
policies. Our results have important implications for bamboo forest management and, to the extent
that some of the differences between actual harvests and optimal bamboo harvests reflect possible
sub-optimal behavior on the part of Moso bamboo forest managers, for ways to improve Moso
bamboo forest management and policy.

The methodology we develop and employ — including our novel nested stochastic dynamic
bioeconomic model, our “nested nested fixed point maximum likelihood estimation” technique, as
well as our iterative approach to model development and refinement (Figure 1) — is relevant and
applicable to the sustainable management of forests under uncertainty in a variety settings wherein
the forests produce products (such as fruits, nuts, and maple syrup) that grow on trees, that are
renewable, and can be harvested at more frequent intervals than the trees themselves. Our
methodology may also be helpful in the examination of other production processes that generate
multiple interdependent products, such as cattle production (Wu et al., 2025b). In addition, our
iterative approach to model development and refinement (Figure 1) may serve as a blueprint for
integrating other insights from natural sciences into economics. Finally, the notion of using
structural models to provide suggestive evidence for the beliefs and perceptions of decision-
making agents regarding various scientific and economic parameters, and to help assess and

mitigate sources of differences between actual behavior and the optimal strategy given by an
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economic model, may provide an important role for structural models in economic analysis in
contexts wherein information about parameter values may already be available, for example from

the natural sciences or economic data.
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Figure 1. Iterative Approach to Model Development and Refinement

Iterative Approach

Biological Economic
Science Data

Interviews with Structural
Forest Managers Econometrics

Notes: We use an iterative approach to developing and refining the model to ensure that it best reflects
reality. We use research and information on Moso bamboo from the biological sciences, economic data,
and interviews we conducted with bamboo forest managers to develop our model and calibrate the
parameters. We compare the optimal strategy given by our model to data on actual bamboo shoot and
bamboo stem harvests. After obtaining initial results from our numerical model, we then went back to
Zhejiang province to interview farmers to better understand their beliefs, perceptions, and decision-making,
and used that information to further refine our model and better reconcile our model with the actual data.
Then, to further understand the beliefs and perceptions of bamboo farmers that underlie and rationalize their
harvesting decisions, and to help us assess and mitigate sources of differences between actual behavior and
the optimal strategy given by our model, we use our nested stochastic dynamic bioeconomic model to
develop a dynamic structural econometric model to estimate different subsets of the parameters
econometrically. Since there is a large set of parameters in our nested stochastic dynamic bioeconomic
model, we are unable to identify the entire set of parameters simultaneously. Instead, we run several
different specifications of our structural model, each focusing on estimating a different set of structural
parameters, holding the remaining parameters fixed at the values we calibrated for our numerical model
based on research and information on Moso bamboo from the biological sciences and in economic data.
For each specification, the respective structural parameters provide suggestive evidence for the beliefs and
perceptions of bamboo farmers regarding that parameter. We use any differences between the estimated
structural parameters and the respective values we calibrated based on biological sciences and economic
data to help us assess and mitigate sources of differences between actual behavior and the optimal strategy
given by our model.

33



Figure 2. Daily Bamboo Shoots Harvest Policy Function

Year 1 P Year 2 Year 3
T T

g 0g 0g 50
£ (40, 15) 2 (40, 15) 2 (40, 15)
% I & | 2 |
2 2 ]
§ (40, 5)| | 4o§ W | 40§ #0.5) | a0
5 (40, 2) | @ (40, 2) | 5 (40,2) |
g | g [ g |
£ (2, 15) | 30§ 62,15) Il 0§ (62,15 | I )
& o a
g ©2.9) | g ©2.9) | g G298 |
5 (32,2) | 207 (32,2) | 20F (32,2) | 20
2 2 2
g (20, 15) ! g (20, 15) ! I g (20, 15) ! I
2 o5 06 o0,5) | 0% .5 ! i
g | g | g |
é (20, 2)| | § (20, 2)| | § (20,2) |
bt o o o o o o o o= o o o o o =] o o= o o o o o =] o !
2 8 2 g 2 2 2 2 8 2 2 2 2 2 2 8 8 2 2 H 2
S £ ] & 8 8 2 2 ] & 3 8 e g & 4 B £
Day of year Day of year Day of year
5 Year 4 0T Year5 5 Year 6
50 50
] 8 8
2 (40, 15) | | £ (0, 15) | [ £ (0, 15) | ]
a 2 2
£ (0,5) I 2 40,5) | 2 40,5) |
§ | 40§ | 40;5 | 40
5 (40,2) | % 40,2) | % 40,2) |
g g g
£ (2. 15) | | 0§ 62,15) |] 0§ @215 | | 30
. | e | @ |
g ©2.5) ‘ g ©2.5) I g G239 I
& (32.2) | 2% (32.2) | 208 (¢2.2) | 20
a a a
§ (20, 15) 1| 8 0.15) d FICRE) 1]
K I 0% | 0% | 10
5 @0.5) ‘ g @0.5) : 5 @0.5) |
= = k3
£ (20,2) | £ (0,2) | £ (0,2 |
g 5 3 5 3 s 3 S 0 5 3 = 3 s 3 3 °E 5 3 2 3 5 3 5 0
2 g 2 2 2 2 2 2 8 2 2 2 2 2 2 g 8 2 2 g 2
2 S & & s 8 2 2 & ] 8 o 2 8 & & B &
Day of year Day of year Day of year
s Year7 s Year 8 = Year9
g 0g 0g 50
€ (40, 15) | l £ (40, 15) |I € (40,15) |
2 (0,5 | 08 @05 | w8 w05 | %
2 S 8
5 (40,2) 1 G (40,2) : G (40.2) :
g g &
£ 2.15) | 30§ 62,15) | 0§ (2,15 | 30
@ | o | @ |
g 029 1 g €29 I g 29 |
& (32,2) | 207F (32,2) | 205 (32,2) | 20
2 2 2
8 (20, 15)| | | 8 (20, 15) II 8 (20, 15) | I
g (20, 5) } mg (20, 5) : Aag (20, 5) : L
£ (20, 2) £ (20, 2) £ (20,2)
= | | |
g = 5 = 3 = 3 = 02 = 3 = 3 = 3 3 02 = 3 3 3 = 3 3 0
2 g 2 2 2 2 2 2 g 2 2 2 2 2 2 ] 2 2 2 2 2
g 2 ] & 8 2 e td ] ] 3 8 2 2 ] g 8 2
Day of year Day of year Day of year
s Year 10 s Year 11
8 50 3 50
£ o, 15) | I £ o, 15) | l
2 o, 5)| | 2 (40, 5) |
s | w3 | ©
% 40,2) | % 0,2) |
g I £ (52, 15) |l
£ (32, 15) I g (B2, 30
@ | @ I
g 625 1 g ©29) 3
5 (32,2) | 207F (32,2) | I 20
2 2
g (20, 15) | [ g (20,15) | l
2 (20,5 | 106 o | 10
ek | 5 29 :
£ (20,2) £ (20,2)
£
g = 5 —— = = = 02 = = —= = = = °
3 ] 2 8 2 8 2 2 8 2 g 2 g 2
2 2 & & 3 8 2 8 ] & 3 £
Day of year Day of year

Notes: Figure presents bamboo shoots harvest policy function for each day for each year as a function of daily shoots price when the number of shoots is a medium
quantity (ny, = 25) and cumulative daily precipitation is low (precip = 0), and when parameters are set at their base case values. For each bamboo growth year,
dashed vertical lines in red that go from the top to the bottom of the graph denote March 1 (first day of spring shooting) of each year.
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Figure 3. Example of Optimal Trajectories
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Notes: Figure presents a simulated set of optimal trajectories for bamboo stem harvest, bamboo shoots harvest, number of bamboo stem, and number of bamboo shoots for
each day of each year starting from a large initial number of bamboo shoots (g = 45) on the first day of the first bamboo growth year, when parameters are set at their
base case values. Vertical lines in red that go from the top to the bottom of the graph denote September 1 (first day of winter shooting) of each year. Dashed vertical lines

in red that go from the top to the bottom of the graph denote March 1 (first day of spring shooting) of each year.
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Figure 4. Optimal vs. Actual Bamboo Stem Harvests
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Notes: Time series plots of the optimal and actual number of bamboo stem harvested by initial age class. Vertical lines
in red that go from the top to the bottom of the graph denote September 1 (first day of winter shooting) of each year.
Dashed vertical lines in red that go from the top to the bottom of the graph denote March 1 (first day of spring shooting)

of each year.
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Figure 5. Optimal vs. Actual Shoots Harvest
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Notes: Time series plots of the optimal vs. actual number of bamboo shoots harvested on each bamboo plot. Vertical
lines in red that go from the top to the bottom of the graph denote September 1 (first day of winter shooting) of each
year. Dashed vertical lines in red that go from the top to the bottom of the graph denote March 1 (first day of spring

shooting) of each year.
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Table 1. Actual vs. Optimal Net Present Value (NPV)

(@)

NPV during days with data Mean (Yuan)

Optimal 272
Actual 127

Optimal minus Actual 145

(b)

Expected NPV over 11-year horizon Mean (Yuan)

Optimal 5,529
Actual 4,007

Optimal minus Actual 1,522

Notes: Table compares actual and optimal net present value (NPV), where net present value (NPV) is
defined as the present discounted value (PDV) of the entire stream of daily profits. Panel (a) compares
actual and optimal NPV during the days with data, where optimal NPV during the days with data is
calculated using the actual initial states and actual daily prices and precipitation; and the actual NPV during
the days with data is calculated using the actual daily actions, states, prices, and precipitation. Panel (b)
compares optimal expected NPV over the entire 11-year horizon, where optimal expected NPV over the
entire 11-year horizon is given by the value function evaluated at the initial states, and takes an expectation
over stochastic shoots prices and precipitation; and where actual expected NPV over the entire 11-year
horizon is the actual NPV during the days with data calculated above plus the discounted continuation value
evaluated at the actual state at end of data and assumes optimal behavior after the last day of data.
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Table 2. Dynamic Structural Model Results: Winter Shoot Growth

Actual .
Structural Parameter (Assumed Value) All Sian Shanchuan
(1) (2) 3)
Winter shoots growth rate o, 0.016 0.272 *** 0.292 *** 0.202 ***
' (0.005) (0.045) (0.009)
# Observations 115,290 65,880 49,410
# Bamboo plots 35 20 15

Notes: The structural parameter estimates are the parameter estimates from our specification of the structural model estimating the winter shoot
growth parameter only for the entire sample (“All”), Sian Township only (“Sian”), and Shanchuan Township only (“Shanchuan”). The actual value

is the assumed base case parameter value we calibrated based on biological sciences and economic data. Bootstrapped standard errors in parentheses.
Significance codes: *** p<0.001, ** p<0.01, * p<0.05
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Table 3. Dynamic Structural Model Results: Shoots Cost Parameters

Actual
Structural Parameter (Assumed Values) All
(1)
Winter shoots harvest cost parameter ¢, 15 14.71%%*
' (4.504)
Spring shoots harvest cost parameter c, 1.5 0.61%**
' (0.117)
Shoots harvest cost convex cost parameter ¢, 50 114.28%**
(1.321)
# Observations 115,290
# Bamboo plots 35

Notes: The structural parameter estimates are the parameter estimates from our specification of the
structural model estimating the shoots cost parameters only for the entire sample (“All”’). The actual values
are the assumed base case parameter values we calibrated based on biological sciences and economic data.
Bootstrapped standard errors in parentheses. Significance codes: *** p<0.001, ** p<0.01, * p<0.05
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Table 4. Dynamic Structural Model Results: Coefficient of Constant Relative Risk Aversion

Actual .
Structural Parameter (Assumed Value) All Sian Shanchuan
(1) (2) 3)
Coefficient of constant relative risk aversion n 0 0.805 *** 0.788 *** 0.121
(risk neutral) (0.008) (0.002) (0.138)
# Observations 115,290 65,880 49,410
# Bamboo plots 35 20 15

Notes: The structural parameter estimates are the parameter estimates from our specification of the structural model allowing for risk aversion and
estimating the coefficient of constant relative risk aversion parameter only for the entire sample (“All”), Sian Township only (“Sian”), and Shanchuan
Township only (“Shanchuan”). The actual value is the assumed base case parameter value. Bootstrapped standard errors in parentheses. Significance

codes: *** p<0.001, ** p<0.01, * p<0.05
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Appendix A. Chapman-Richards Growth Model

There are multiple available models to measure the growth and productivity of a Moso
bamboo plant. Allometric equations and logistic functions have been used for characterizing
bamboo growth. An allometric model predicts biomass using diameter at breast height. Biological
studies suggest using the Chapman-Richards model (Richards, 1959), which is a flexible growth
model for plants (Liu and Li, 2003), and has been used to predict Moso bamboo height (Yen, 2016).
In addition to a model for bamboo stem growth, we also need a model for bamboo shoot growth.
Bamboo shoot biomass accumulation has been described using a logistic curve (Zhou, 1998). The
literature constructing a growth model for bamboo shoots is sparse, however, and even less is
known about underground winter shoot growth. Thus, as the Chapman-Richards model is a
generalized logistic curve, and since bamboo shoots are young bamboo plants, we adopt and
separately parameterize separate Chapman-Richards models for winter shoot growth and spring
shoot growth as well.

We therefore use a separate Chapman-Richards model for the growth of each of the three
types j of bamboo products: winter shoots s,,, spring shoots sy, and bamboo stem b. The

Chapman-Richards model is given by:

1/(1-v;
Y, =4;-(1-Qje"94) / "1),

where Y; is the total biomass for bamboo product in a single bamboo plant; ¢;is the age of bamboo
(in days for winter and spring shoots, and in years for bamboo stem); and 4;, a; , Q;, v; are
parameters whose interpretation and values for each of the bamboo product types j are discussed
in more detail below. The Chapman-Richard’s model predicts biomass ¥;, and Y in units of
kilograms of dry weight. In contrast, our shoots and stem price are in units of yuan per kilogram
of actual weight, which contains both biomass and water. We use a conversion coefficient T to
convert biomass in dry weight into its actual weight (which contains both biomass and water).
Our calibrated piecewise Chapman-Richards growth function for bamboo shoots, which
combines a Chapman-Richards growth function for winter shoots with a separate Chapman-
Richards growth function for spring shoots, is presented in Figure A.1. Our calibrated Chapman-
Richards growth function for bamboo stem growth is presented in Figure A.2. We discuss our

calibration in more detail below.
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A.1. Parameters in Chapman-Richards model of bamboo shoot growth for winter shoots

To date there have been very few studies on Moso bamboo underground development,
winter shoots biomass, and winter shoots growth. We calibrate our model for winter shoots growth
to capture what previous research has found about winter shoots, and also to better match the actual
winter shoots harvest decisions in our data. In particular, previous research that has found winter
shoots are dormant from December onwards (Su, 2012; Sun et al. 2017; Wei et al., 2017; Hu et al.,
2020) and that over half of winter shoots growth happens during November (Wei et al., 2017). In
our data, some bamboo plots have harvested winter shoots as early as late October when the winter
shoots price is very high, which our dynamic model shows would not be optimal even with a very
high winter shoots price if the winter shoots biomass is very low in late October. Since it is unlikely
that farmers are so completely wrong, we additionally calibrate our winter shoots growth function
so that their biomass in late October is higher.

We use the following Chapman-Richards model for winter shoot growth:

Y. = ASW . (1 _ ste_“SwtsW)l/(l_VSW)’

Sw

where Y, is the total biomass of a winter shoot of age ¢, days. The shoots biomass is basically

the dried weight of shoots. The Chapman-Richards model for winter shoot growth yields the

following equation of motion for winter shoot biomass:

1

daYs (t a —1
sw (Esyy) — _Ssw AS QS (1 _ QS e_aSWtSW)l_vSW e_aswtsw_
dts,, 1-vg, * Sw Sw w

d?vs,, (ts,,)

dtg,,”

At the inflection point, where = 0, we have:

vs, = 1 — Qg e Fswhow,

For the age ¢, of winter shoots, due to its relatively short period of growth, age of bamboo
shoots is measured in days rather than years. Winter shooting is from September 1 until February
28. The number of winter shooting days ts.2* is therefore 181 days.

The parameter Ag | is related to the maximum possible winter shoot biomass for a single
winter shoot. According to a video from Zhejiang province of winter shoots in late November
2020 (“Zhejiang Local Winter Shoots Trading on Site”, 2020), it is very rare to have winter shoots

that is 0.75 kg in Zhejiang province, which is 0.375 kg in dry biomass (using our conversion
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coefficient that actual weight is T = 2 times biomass in dry weight). According to Yonghua Qiu,
a senior engineer from Suichang Bureau of Forestry (Suichang is a township in Zhejiang province),
the maximum possible winter shoots weight could be over 0.5 kg. It is also rare to harvest winter
shoots that is more than 1.5 kg (Zeng and Peng, 2013). In our numerical model, we set Y @%, the
maximum possible winter shoots biomass at the end of winter shooting (day t5.2*), to be 0.75 kg.
This is to say, the maximum possible winter shoots weight at the end of winter shooting will be
1.5 kg per shoot in actual weight, and thus 0.75 kg in biomass. We then calibrate A, , which is
the maximum possible winter shoot biomass as the number of days goes to infinity (which is well

past the end of winter shooting) as follows:

1/(1-vsy,)

Ag, = Y/ (1~ Qs e 5w ™) -

Sw

For the growth rate a; , for winter shoots, the growth rate for bamboo shoots is more rapid
than that for bamboo stem (Song et al., 2016). To date there have been very few studies on Moso
bamboo underground development, winter shoots biomass, and winter shoots growth. Wei et al.
(2017) describes underground bamboo shoots development, but only have a time trend of growth
of winter shoots in terms of individual height, not biomass. Hu et al. (2020) study gene expression
for each month of shoots growth from September to the following year’s April. The number of
genes expressed in the shoots is a measure of shoots growth activity level, as well as biomass

accumulation. Since Hu et al. (2020) find the winter shoots express fewer genes than spring shoots

do, we choose a growth rate @, for winter shoots that is slightly lower than the growth rate o,

for spring shoots that we specify below. In particular, since we set the growth rate a, for spring
shoots to 0.036 below, and winter shoots is expressing less genes compared to spring shoots, we
set the growth rate a;  for winter shoots to 0.016.

For the biological constant Qg , which is related to the initial winter shoot biomass at the
beginning of winter shooting, we set Qs , to 1 because we want the biomass of winter shoots to be
equal to O on day t;, = 0.

The parameter vy, is related to the inflection point of the Chapman-Richards growth
function, where the time rate of change in winter shoot biomass reaches its maximum. This

allometric constant lies between zero and one for the Chapman-Richards growth model

(Fekedulegn et al., 1999; Liu and Li, 2003). Wei et al. (2017) study the growth of Moso
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underground shoots by measuring individual shoot diameter from August to February the
following year, and find that Moso bamboo shoots grow actively from late August to late
November and have the fastest growth from early to late November, during which over half of the
underground shoots growth takes place. Bamboo shoots become dormant from December until
the following March because of the cold weather (Wei et al., 2017; Hu et al., 2020). Sun et al.
(2017) find that underground shoots formed in September; developed into underground shoots in
October and November. The winter shoots growth rate slowed down and almost stopped in
December until February the following year (Sun et al. 2017). This is to say, the fastest growing
time is around day 76 (mid November) of the entire winter shoot growth process. We therefore

set the winter day of inflection t;“;ﬂ to be 76. We calculate v, using:

_ infl
Vs, = 1- ste Fswlsw

and iterating on v  until convergence.

A.2. Parameters in Chapman-Richards model of bamboo shoot growth for spring shoots

We use the following Chapman-Richards model for spring shoot growth:

YSs = ASs ’ (1 - QSse_aSStss)l/(l_vSS)

2

where Y is the total biomass of a spring shoot of age ¢, days.

For the age t,_of spring shoots, due to its relatively short period of growth, age of bamboo
shoots is measured in spring shooting days rather than years. The spring shooting period starts on
March 1 and ends on August 31, the last day of the bamboo growth year. In other words, shoots
do not become bamboo stem until the end of the bamboo growth year. This is because, as seen in
Song et al. (2016), the bamboo still seems to grow very fast following the spring shoot growth
function until the end of the bamboo growth year. Thus, the number of spring shooting days
ts.o* we use in our numerical model is 184 days. Bamboo shoots grow into a bamboo plant after
the end of spring shooting (Shi et al., 2013).

The parameter Ag | is related to the maximum possible spring shoot biomass for a single
spring shoot. Xu et al. (2011) study the time trend of above ground biomass in Lin’an city,
Zhejiang Province, and find that on spring shooting day 88, the spring shoot biomass is
approximately 8.25 kg in dry weight. Song et al. (2016) shows shoots biomass at the end of August

to be ~8 kg. In our numerical model, we set Yg'®*, the maximum possible spring shoots biomass
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at the end of spring shooting (day £51?%), to be 8 kg. We then calibrate A,_, which is the maximum

possible spring shoot biomass as the number of spring shooting days goes to infinity (which is well

past the end of spring shooting) as follows:

max+1/(1-Vsg
Ass — Kgr:laX/(l _ ste_asstss ) /(1-v ).

For the growth rate a;_ for spring shoots, the growth rate for bamboo shoots is more rapid
than that for bamboo stem (Song et al., 2016). Based on Song et al. (2016), the growth rate for
spring shoots at the end of April is 0.036 per day. We therefore set our spring shoot growth rate
. t0 0.036.

The biological constant (s is related to the initial spring shoot biomass at the beginning of
spring shooting. Since Qg is based on the biomass of spring shoots at the beginning of spring
shooting, then this should be calculated based on the biomass at the end of winter shooting. In

other words, we use the biomass on the last day of winter shooting to calculate Q.. The biomass
on the last day of winter shooting, Ys7%%, is the Chapman-Richards growth function for winter

shoots evaluated on the last day of winter shooting. We then calculate Q; as:

1— (ysmax/ysmax) 1-vsg
_ w s
Qs,

= 1o max -
_ (ymax /ymax Ss ,— sty
1 (st / Yo ) e °ss

The parameter vg is related to the inflection point of the Chapman-Richards growth
function, where the time rate of change in spring shoot biomass reaches its maximum. The
maximum growth rate occurs at the end of April (Song et al., 2016), which is around 60 days of

spring shooting. We therefore set the spring day of inflection t}‘s‘ﬂ to be 60. We calculate v, using:

_ infl
v, = 1— ste Usslss

and iterating on vs_until convergence.

A.3. Parameters in Chapman-Richards model of bamboo stem growth
We use the following Chapman-Richards model for bamboo stem growth:
Y, = Ay - (1= Que™®t)/070ss),
where Y}, is the total biomass of a bamboo stem of age t;, years.
For the age t;, of bamboo forest in years, Moso bamboo stems reach their maximum

biomass at age 4-5 years (Zhang et al., 2014; Zhuang et al., 2015), do not increase significantly in
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biomass after 4.62 years (Zhuang et al., 2015), and mature at age 5-6 years (Yen and Lee, 2011).
We assume Moso bamboo stem biomass does not increase after t;'®* years, and set t;"**to 8 years.

For A;,, which is related to the maximum possible bamboo stem biomass for a single
bamboo plant in the specific area, the maximum possible bamboo biomass for a single bamboo
plant depends on land quality such as slope, precipitation, soil type, and temperature of the bamboo
field we are interested in. Yen (2016) calculate maximize stem biomass for Moso bamboo in
central Taiwan in its 5th year growth to be 15.88 kg per plant with standard deviation of 2.51 kg.
Zhang et al. (2014) find that the maximum stem biomass for an eight-year-old Moso bamboo has
average biomass of 15.06 kg, with a standard deviation of 6.58 kg. Stem biomass accumulation
generally slows down when Moso bamboo reaches age 5-6 years (Yen and Lee, 2011). In our
numerical model, based on the means in the previous literature, we set Y;"?*, the maximum
possible bamboo stem biomass at the end of t;'®* years, to be 15.5 kg. We then calibrate A4,
which is the maximum possible bamboo stem biomass as the number of years goes to infinity

(which is well past t;*?*) as follows:

max1/(1-vp)
Ab — meaX/(l _ Qbe—abtb ) Vp .

For the growth rate a; for bamboo stem, the growth rate for Moso bamboo differs with
studies as well. According to Xu et al. (2011), the major biomass accumulation occurred along
with the fast elongation of bamboo stem in the early stage of bamboo growth. In the stage where
first shoot shell detached and branch emergence, bamboo biomass tripled. To estimate the biomass
accumulation rate for Moso bamboo, we compare bamboo stem biomass in different age groups.
According to Zhang et al. (2014), the growth rate for bamboo stem biomass over four 2-year stages
is in the range of 0.060 to 0.196 per 2-year stage, or an average of 0.03 to 0.098 per year. Based
on Song et al. (2016), the growth rate after 4 months of shooting (in August before the first full

bamboo growth year) is 0.75 per year. In our numerical model, we set the growth rate ¢, for

bamboo stem to 0.75.

The biological constant Q,, which is related to the initial bamboo stem biomass at the
beginning of the first bamboo growth year. For bamboo stem, we model the growth of bamboo
stem starting from the end of spring shooting, when bamboo shoots become bamboo stem. At the
beginning of its full bamboo growth year (i.e., at the beginning of bamboo growth year age 1), the

initial bamboo stem biomass is the maximum bamboo shoot biomass at the end of spring shooting.
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The end of spring shooting in years is tpq = (tg‘;‘x + t?;ax) /365. The initial bamboo stem
biomass at the end of spring shooting (year tp) is the maximum bamboo shoot biomass Yy'#* at
the end of spring shooting. We then calculate Q; as:

1— (Ysr;laX/Yl;naX)l‘”b

—apt max ;ymax\1=Vp  —apthax:
e btho— (Y nax /ymax) T e T 4btp

Qp =

The parameter v, is related to the inflection point of the Chapman-Richards growth
function, where the time rate of change in bamboo stem biomass reaches its maximum. In Song
et al. (2016), the biomass accumulation is fastest after in September following spring shooting.
Since the bamboo growth year starts September 1, this means that the inflection point takes place
the first month of the first full bamboo growth year (bamboo growth year age 1). We therefore set

the year of inflection ti™ to be 1. We calculate v;, using:

infl
vy = 1— Qpe~ i

and iterating on v}, until convergence.
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Figure A.1. Piecewise Chapman-Richards Growth Function for Bamboo
Shoots
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Notes: We use separate Chapman-Richards growth functions for winter shooting and spring
shooting. The first day of winter shooting is September 1. Winter shooting is from September 1
until February 28. The number of winter shooting days is therefore 181 days. The spring shooting
period starts on March 1 and ends on August 31, the last day of the bamboo growth year. The
number of spring shooting days is 184 days.
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Figure A.2. Chapman-Richards Growth Function for Bamboo Stem
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Appendix B. Data and Parameters

B.1 Data on actual bamboo shoot and bamboo stem harvest

We collect, translate, and transcribe individual hard-copy handwritten Chinese records on
actual bamboo shoot harvest and bamboo stem harvest decisions on 20 meter by 20 meter bamboo
plots in Shanchuan Township and Sian Township in Zhejiang province in China. Our data set
includes 35 bamboo plots over 2 bamboo growth years from March 1, 2017 to August 31, 2018:
20 bamboo plots in Sian Township and 15 bamboo plots in Shanchuan Township. For each
bamboo plot, we have data on the number of bamboo stem and on the dates, quantity, and price

received for each bamboo stem harvest and each bamboo shoots harvest.

B.2. Bamboo shoot price

We use data on daily bamboo shoots prices for Zhejiang province over the period January
1, 2014 to June 30, 2018 from the National Agricultural Products Business Information Public
Service Platform operated by China’s Ministry of Commerce (National Agricultural Products
Business Information Public Service Platform, 2018). We use the shoots prices from the Zhebei
Jiashan wholesale market since there are more days available, since their shoots price data tends
to be more consistent with the bamboo shoot prices that the farmers in our data set received and
recorded in the raw bamboo plot harvest data we collected, and since the data are also more
detailed. Generally, there no bamboo shoots are sold in July, August, and September since these
months are formation period of shoots underground. From mid June to mid October, there are no
shoots on the wholesale market, and thus no price available.

We merge our daily shoots price data with our harvest data as follows. If any bamboo
shoots harvest took place during a particular day on a particular bamboo plot, then we use the
bamboo shoot price that the farmer received and recorded in the raw bamboo plot harvest data we
collected. This means the shoots price are not necessarily the same for the 2 townships due to
different shoots harvest activities. This also means that even for the same township, there could be
different price for the same day if harvest took place on one bamboo plot but not another. For
bamboo plot-days for which no bamboo shoots harvest took place, we use the daily bamboo shoots
prices for Zhejiang province from the National Agricultural Products Business Information Public

Service Platform (2018).
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Figures B.la and B.1b plot histograms of the daily winter shoots price during winter
shooting and the daily spring shoots price during spring shooting, respectively, over the years

2016-2018 for all bamboo plots in our data set.

B.3. Bamboo stem price

There is not much price volatility in bamboo stem price within a year, and there also was
not much of a change in bamboo stem price between years during the years of our data set. The
bamboo stem prices faced by the bamboo managers in our data set were 0.4 ¥/kg in 2017 and 0.38
¥/kg in 2018 (personal communication, Mr. Jianping Pan, manager of Fumin Bamboo Shoot

Specialized Cooperative, August 2018).

B.4. Harvest costs

According to Mr. Jianping Pan, manager of Fumin Bamboo Shoot Specialized Cooperative,
bamboo harvest can be fast: one worker can harvest 1 mu (about 667 square meters) of bamboo
per day. For bamboo stem, workers get paid daily with a rate of 300 yuan per day and harvest
1,250 to 2,000 kg of bamboo stem. For spring shoots, workers got paid daily, with a rate of 150 to
180 yuan per day, and can harvest 100 kg of spring shoots per day; the total harvest for each
bamboo plot is 200-250 kg per spring shooting period. Winter shoots are more expensive and
harder to find than spring shoots, and thus workers get paid for 300 yuan per day and can harvest
about 15 to 20 kg per day (personal communication, Mr. Jianping Pan, manager of Fumin Bamboo
Shoot Specialized Cooperative, August 2018).

For the harvesting costs in our numerical model, we calculate the unit costs of harvest by

dividing estimates of harvest per worker per day by cost per worker per day. We vary the unit cost

¢, of’bamboo shoot harvest from 300/20 ¥/kg to 300/15 ¥/kg for winter shoots, and from 150/100

¥/kg to 180/100 ¥/kg for spring shoots. We set the unit cost ¢, of bamboo stem harvest from
300/2,000 ¥/kg to 300/1,250 ¥/kg.

B.5. Time
Since the winter shooting period and the corresponding spring shooting period span two
consecutive calendar years, we use a bamboo growth year rather than a calendar year for our

“year”. The first day of each bamboo growth year is the first day of winter shooting on September
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1. Each bamboo growth year y starts from September 1 (the first day of winter shooting) of one
calendar year and ends on August 31 of the following calendar year. Since bamboo stem harvest
is possible during any day throughout the year, we model the decision on each day of the bamboo
growth year. Spring shooting begins on March 1 in Zhejiang province. Thus, winter shooting
takes place from September 1 until February 28; and spring shooting starts on March 1 and ends
on August 31, the last day of the bamboo growth year.

B.6. Finite horizon

Generally, Moso bamboo stems reach their maximum biomass at age 4-5 years (Zhang et
al., 2014; Zhuang et al., 2015), do not increase significantly in biomass after 4.62 years (Zhuang
et al., 2015), and mature at age 5-6 years (Yen and Lee, 2011). In our numerical dynamic model,
we allow bamboo managers the possibility of letting bamboo stem grow to age 11 years, well past
their age of maximum biomass, if it is optimal for them to do so. Since it would be very
economically inefficient to harvest bamboo stem after 11 years, however, we model bamboo stem
growth with a finite horizon of 11 years. We therefore have a finite sequence of 11 one-year finite
horizon problems. Thus, the outer dynamic optimization problem is a between-year annual

dynamic programming problem with a finite horizon of 11 years.

B.7. Daily probability of high precipitation

The state variable precip is a dummy for the cumulative daily precipitation over July and
August of that bamboo growth year exceeding a high precipitation threshold that day. We use 400
mm as the cutoff to determine if precip is high (precip =1) or not (precip = 0).

Since cumulative daily precipitation over July and August of a bamboo growth year varies
within July and August of a year (and is weakly monotonically increasing), the state variable precip
is not necessarily constant for all of July and August. For some townships and some years, it is
possible that precip = 0 at the beginning of July but then becomes 1 closer to the end of August.

The daily probability of high precipitation is the probability that precip is equal to 1 (high)
that day. The daily probability of high precipitation is weakly monotonically increasing from July
1 to August 31. For each township, for each day in July and August, we calculate the daily
empirical probability of high precipitation (precip = 1) using the latest daily precipitation data for

the township from the National Oceanic and Atmospheric Administration Climate Prediction



Center over the period 2010-2018 (NOAA, 2021). In particular, for each township, for each of the
62 days from July 1 and August 31, the daily empirical probability of high precipitation for that
day for that township is calculated as the fraction of years in that township over the period 2010-

2018 for which precip = 1 on that day.

B.8. Daily probability of shoots decline

More than half of the shoots will degenerate and die naturally before they grow into
bamboo plants (Jiang, 2007). In our base case, we set the daily probability of shoots decline during
winter shooting to be 1/30, such that the number of shoots is expected to decline by approximately

1 bin per month during winter shooting.

B.9. Discount factor

Since we nest an inner finite-horizon within-year daily dynamic programming problem
within an outer finite-horizon between-year annual dynamic programming problem, we use two
different discount factors f: a daily discount factor B; and an annual discount factor 5,. We set

1/365
B,

the daily discount factor to be ; = , which yields an annual discount factor of f8,, over

365 days. In the base case, we set the annual discount factor to be 8, = 0.9. An annual discount

factor of 0.9 1s commonly assumed in the literature using dynamic models (see e.g., Ryan (2012);

Lin (2013); Sears, Lim and Lin Lawell (2019); Cook and Lin Lawell (2020)).

B.10. Number of bamboo shoots

In our dataset we observe the weight of bamboo shoots harvested (as well as the number
of bamboo stem and number of bamboo stem harvested), but do not observe either total number
of shoots or the number of shoots harvested. Ideally, we would like to convert the units for the
bamboo shoots harvest data and any estimated weight of bamboo shoots into the number of
bamboo shoots. Even though we can estimate the total possible weight of bamboo shoots, the
actual weight of bamboo shoots would be different if some bamboo shoots were previously
harvested that season. In addition, we cannot simply subtract the weight of bamboo shoots
harvested earlier in the season from our estimate of the total possible weight of bamboo shoots as
a function of bamboo stems, since those bamboo shoots that were harvested earlier in the season

would have grown or changed in weight if they had not been harvested. So it would be ideal if we
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made the harvesting decision in terms of the number of bamboo shoots harvested, so that we can
model the weight and change in weight of the remaining bamboo shoots.

We estimate the unobserved bamboo shoot state and control variables as follows. First,
for each bamboo plot and each day, we convert the weight of bamboo shoots harvest into the
number of bamboo shoots harvested by dividing the weight of bamboo shoots harvest by the
bamboo shoot biomass per bamboo shoot that day of the year from Chapman-Richard’s model for
bamboo shoot growth, assuming that bamboo shoots start growing from the beginning of winter
shooting.

We then impute the maximum number of bamboo shoots in the ground in the absence of
bamboo shoot harvest for each bamboo plot in each bamboo growth year. To do so, we apply the
following model from Zheng, Hong and Zhang (1998) to estimate the weight of bamboo shoots in
the ground that remain after all the bamboo shoots have been harvested that season:

wp, = 0.0018 * d,>8%37,
where wy, is weight of an individual bamboo shoot and dj, is its maximum diameter. As we do
not have data on the maximum diameter of bamboo shoots, we use data on the diameter at breast
height (DBH) of each newly grown bamboo stem that year to represent the diameter at breast
height of bamboo shoots if they were to grow until the end of that season. For each bamboo plot
and each year in our data set, we use data on the diameter at breast height (DBH) of newly grown
bamboo stem, representing the diameter at breast height of bamboo shoots if they were to grow
until the end of that season, to estimate the weight of a bamboo shoot if were to grow until the end
of the season. Then, for each bamboo plot and each year, to calculate the weight of bamboo shoots
on this bamboo plot that are not harvested, we take the sum over all the newly grown bamboo
stems of the respective weights of a bamboo shoot if were to grow until the end of the season for
that bamboo plot in that year. We convert the weight of bamboo shoots that are not harvested by
the end of the season into the number of bamboo shoots that are not harvested by dividing the
weight of bamboo shoots not harvested by the bamboo shoot biomass per bamboo shoot from
Chapman-Richard’s model for bamboo shoot growth, assuming that the unharvested bamboo
shoots must have grown from the beginning of winter shooting until the last day of spring shooting.

For each bamboo plot, to calculate the number ng of bamboo shoots at the beginning of the

season, in the absence of any bamboo shoots harvest, we add the total number of bamboo shoots

harvested over the season to the total number of bamboo shoots that remain unharvested at the end



of the season. For each day on each bamboo plot, we calculate the bamboo shoots harvest action
variable ag as the number of shoots harvested that day on that bamboo plot by the number ng of
bamboo shoots on that bamboo plot at the beginning of the season, in the absence of any bamboo
shoots harvest. We then calculate the number n; of bamboo shoots for each day on each bamboo
plot as the number ng of bamboo shoots on that bamboo plot the previous day that season minus
the number of bamboo shoots harvested on that bamboo plot on the previous day that season.
Owing to computational and state space constraints, we discretize the number of bamboo
shoots, the number of bamboo shoots harvested, the number of bamboo stem, and the number of
stem harvested in our numerical model and our structural model. Although some information in
the data is lost by discretizing the state and action variables, one advantage of having to use
discretized variables in our numerical model and our structural model is that by discretizing the
number of bamboo shoots, the number of bamboo shoots harvested, the number of bamboo stem,
and the number of stem harvested, our results are robust to the exact value of the number of
bamboo shoots, the number of bamboo shoots harvested, the number of bamboo stem, and the
number of stem harvested within our broader size bins. As a consequence, our results are robust
to any imprecision and inaccuracy in our conversion of bamboo shoots weight to number of
bamboo shoots that still lie within the respective broader size bins. Likewise, our results are robust
to any imprecision and inaccuracy in how we model the effects of precipitation and/or the
possibility of shoots death that still lie within the respective broader size bins. Thus, the
discretization of our state and action variables is not only necessary for our numerical model and
dynamic structural econometric model, but also enables us to best model bamboo stem and shoots
harvesting decisions given data availability and computational constraints, and in a manner robust
to any additional assumptions or imprecision that may be introduced if we were to instead finely
model every last detail of every aspect of bamboo management for each and every individual

bamboo farmer.
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Figure B.1. Bamboo Shoots Prices
(a) Winter Shoots Prices

Daily Winter Shoots Prices over the Years 2016-2018
for all plots

0 5 10 15 20 25 30 35 40
Winter shoots price (yuan per kg) all

Notes: Figure plots a histogram of the daily winter shoots price during winter shooting over
the years 2016-2018 for all bamboo plots in our data set.

(b) Spring Shoots Prices

Daily Spring Shoots Prices over the Years 2016-2018
for all plots

1
0 5 10 15 20 25 30 35 40
Spring shoots price (yuan per kg) all

Notes: Figure plots a histogram of the daily winter shoots price during winter shooting over
the years 2016-2018 for all bamboo plots in our data set.
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Appendix C. Supplementary Figures and Tables

Figure C.1. Optimal Bamboo Stem Harvest

a) Bamboo Stem Harvest
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b) Number of Bamboo Stem
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Notes: Figure presents a simulated set of optimal trajectories for bamboo stem harvest and number of bamboo stem,
for each day of each year starting from a medium initial number of bamboo shoots (n; = 25) on the first day of the
first bamboo growth year, when parameters are set at their base case values. Vertical lines in red that go from the top
to the bottom of the graph denote September 1 (first day of winter shooting) of each year. Dashed vertical lines in red
that go from the top to the bottom of the graph denote March 1 (first day of spring shooting) of each year.
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Figure C.2. Optimal Bamboo Stem Harvest: High Bamboo Stem Price

a) Bamboo Stem Harvest
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b) Number of Bamboo Stem
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Notes: Figure presents a simulated set of optimal trajectories for bamboo stem harvest and number of bamboo stem,
for each day of each year starting from a medium initial number of bamboo shoots (n; = 25) on the first day of the
first bamboo growth year, when the bamboo stem price is high, and when all other parameters are set at their base
case values. Vertical lines in red that go from the top to the bottom of the graph denote September 1 (first day of
winter shooting) of each year. Dashed vertical lines in red that go from the top to the bottom of the graph denote

March 1 (first day of spring shooting) of each year.
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Figure C.3. Daily Bamboo Shoots Harvest Policy Function When Number of Shoots is Very Low
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Figure C.4. Daily Bamboo Shoots Harvest Policy Function When Risk Averse
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Notes: Figure presents bamboo shoots harvest policy function for each day for each year as a function of daily shoots price when the number of shoots is a medium
quantity (ng = 25) and cumulative daily precipitation is low (precip = 0), when farmers are risk averse (with a coefficient of constant relative risk aversion of
n = 0.8), and when all other parameters are set at their base case values. For each bamboo growth year, dashed vertical lines in red that go from the top to the
bottom of the graph denote March 1 (first day of spring shooting) of each year.
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Figure C.5. Perceived Chapman-Richards Growth Function for Bamboo
Shoots

Bamboo Shoot Biomass from Piecewise Chapman-Richards Growth Functions
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Notes: Figure plots bamboo farmers’ perceived Chapman-Richards growth function for winter
shooting and spring shooting based on the parameter estimates for winter shoots growth rate o,

of 0.272 from our dynamic structural model in Table 2. We use separate Chapman-Richards
growth functions for winter shooting and spring shooting. The first day of winter shooting is
September 1. Winter shooting is from September 1 until February 28. The number of winter
shooting days is therefore 181 days. The spring shooting period starts on March 1 and ends on
August 31, the last day of the bamboo growth year. The number of spring shooting days is 184
days.
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Table C.1. Dynamic Structural Model Results: Shoots Decline Probability

Actual
Structural Parameter (Assumed Value) All
(1)
Daily shoots decline probability during winter shooting 0.0333 0.000%**
(0.0000)
# Observations 115,290
# Bamboo plots 35

Notes: The structural parameter estimate is the parameter estimate from our specification of the structural
model estimating the shoots decline probability parameter only for the entire sample (“All”). The actual
value is the assumed base case parameter value we calibrated based on biological sciences and economic
data. Bootstrapped standard errors in parentheses. Significance codes: *** p<0.001, ** p<0.01, * p<0.05
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Figure C.6. Optimal vs. Actual Shoots Harvest using structural parameter
estimate for winter shoots decline probability

Actual vs. Optimal Shoots Harvest, all plots
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Notes: Time series plots of the perceived optimal vs. actual number of bamboo shoots harvested on each bamboo plot,
using the structural parameter estimate for the daily winter shoots decline probability of 0 from Table C.1. Vertical
lines in red that go from the top to the bottom of the graph denote September 1 (first day of winter shooting) of each
year. Dashed vertical lines in red that go from the top to the bottom of the graph denote March 1 (first day of spring
shooting) of each year.
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Table C.2. Actual vs. Optimal NPV using structural parameter estimate for
winter shoots decline probability

(@)

NPV during days with data Mean (Yuan)

Optimal 722
Actual 127

Optimal minus Actual 595

(b)

Expected NPV over 11-year horizon Mean (Yuan)

Optimal 12,525
Actual 9,483

Optimal minus Actual 3,042

Notes: Table compares actual and optimal net present value (NPV), where net present value (NPV) is
defined as the present discounted value (PDV) of the entire stream of daily profits, using the structural
parameter estimate for winter shoots decline probability of 0 from Table C.1. Panel (a) compares actual
and optimal NPV during the days with data, where optimal NPV during the days with data is calculated
using the actual initial states and actual daily prices and precipitation; and the actual NPV during the days
with data is calculated using the actual daily actions, states, prices, and precipitation. Panel (b) compares
optimal expected NPV over the entire 11-year horizon, where optimal expected NPV over the entire 11-
year horizon is given by the value function evaluated at the initial states, and takes an expectation over
stochastic shoots prices and precipitation; and where actual expected NPV over the entire 11-year horizon
is the actual NPV during the days with data calculated above plus the discounted continuation value
evaluated at the actual state at end of data and assumes optimal behavior after the last day of data.



Figure C.7. Optimal vs. Actual Shoots Harvest using structural parameter
estimate for coefficient of constant relative risk aversion

Actual vs. Optimal Shoots Harvest, all plots
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Notes: Time series plots of the perceived optimal vs. actual number of bamboo shoots harvested on each bamboo plot,
using the structural parameter estimate for the coefficient of constant relative risk aversion of 0.8 from Table 4.
Vertical lines in red that go from the top to the bottom of the graph denote September 1 (first day of winter shooting)
of each year. Dashed vertical lines in red that go from the top to the bottom of the graph denote March 1 (first day of
spring shooting) of each year.
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Table C.3. Actual vs. Optimal Welfare using structural parameter estimate
for coefficient of constant relative risk aversion

(a)
Optimal 58
Actual -273
Optimal minus Actual 331
(b)
Optimal 241
Actual -98
Optimal minus Actual 339

Notes: Table compares actual and optimal welfare, where welfare is defined as the present discounted value
(PDV) of the entire stream of daily payoffs, using the structural parameter estimate for coefficient of
constant relative risk aversion of 0.8 from Table 4. Panel (a) compares actual and optimal PDV payoffs
during the days with data, where optimal PDV payoffs during the days with data is calculated using the
actual initial states and actual daily prices and precipitation; and the actual PDV payoffs during the days
with data is calculated using the actual daily actions, states, prices, and precipitation. Panel (b) compares
optimal expected PDV payoffs over the entire 11-year horizon, where optimal expected PDV payoffs over
the entire 11-year horizon is given by the value function evaluated at the initial states, and takes an
expectation over stochastic shoots prices and precipitation; and where actual expected PDV payoffs over
the entire 11-year horizon is the actual PDV payoffs during the days with data calculated above plus the
discounted continuation value evaluated at the actual state at end of data and assumes optimal behavior
after the last day of data.



Table C.4. Dynamic Structural Model Results: Annual Discount Factor

Actual
Structural Parameter (Assumed Value) All
(1)
Annual discount factor f3, 0.9 1.000 ***
’ (0.000)
# Observations 115,290
# Bamboo plots 35

Notes: The structural parameter estimate is the parameter estimate from our specification of the structural
model estimating the annual discount factor parameter only for the entire sample (“All”). The actual value

is the assumed base case parameter value. Bootstrapped standard errors in parentheses. Significance codes:
**% p<0.001, ** p<0.01, * p<0.0
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